分析 (1)由題意可知:Sn+1=2an+1-2(n+1),Sn=2an-2n,兩式相減得:an+1=2an+1-2an-2,整理得:an+1+2=2(an+2),由bn=an+2,可知:$\frac{_{n+1}}{_{n}}$=$\frac{{a}_{n+1}+2}{{a}_{n}+2}$=2,可知數(shù)列{bn}是等比數(shù)列,根據(jù)等比數(shù)列通項(xiàng)公式求得${b_n}=4•{2^{n-1}}={2^{n+1}}$,代入即可求得${a_n}={2^{n+1}}-2$;
(2)由(1)求出nan,根據(jù)分組求和法、錯(cuò)位相減法,等比、等差數(shù)列的前n項(xiàng)和公式求出Tn.
解答 解:(1)證明:∵Sn=2an-2n對(duì)于任意的正整數(shù)都成立,
∴Sn+1=2an+1-2(n+1),
兩式相減,得Sn+1-Sn=2an+1-2(n+1)-2an+2n,
∴an+1=2an+1-2an-2,即an+1=2an+2,
∴an+1+2=2(an+2),
∴$\frac{_{n+1}}{_{n}}$=$\frac{{a}_{n+1}+2}{{a}_{n}+2}$=2,對(duì)一切正整數(shù)都成立.
∴數(shù)列{bn}是等比數(shù)列.
由已知得 S1=2a1-2即a1=2a1-2,
∴a1=2,
∴首項(xiàng)b1=a1+2=4,公比q=2,
∴${b_n}=4•{2^{n-1}}={2^{n+1}}$.
∴${a_n}={2^{n+1}}-2$;
(2)∵nan=n•2n+1-2n,
∴{nan}的前n項(xiàng)和Tn,
Tn=1•22+2•23+…+n•2n+1-2(1+2+…+n)
=1•22+2•23+…+n•2n+1-2×$\frac{n(n+1)}{2}$,
=1•22+2•23+…+n•2n+1-n(n+1)
令cn=n•2n+1,數(shù)列{cn}前n項(xiàng)和Cn,
Cn=1•22+2•23+…+n•2n+1,①
2Cn=1•23+2•24+…+n•2n+2,②
由①-②得:-Cn=22+23+…+2n+1-n•2n+2
=$\frac{4(1-{2}^{n})}{1-2}$-n•2n+2,
=2n+2-4-n•2n+2
=(1-n)2n+2-4,
∴Cn=(n-1)2n+2+4
∴Tn=(n-1)2n+2+4-n(n+1).
點(diǎn)評(píng) 本題考查等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式,Sn與an的關(guān)系式,以及分組求和法、錯(cuò)位相減法,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,1] | B. | [$\frac{1}{2}$,1] | C. | [-$\frac{1}{2}$,1] | D. | [0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,2] | B. | (-1,1) | C. | ∅ | D. | (-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
幾何題 | 代數(shù)題 | 總計(jì) | |
男同學(xué) | 22 | 8 | 30 |
女同學(xué) | 8 | 12 | 20 |
總計(jì) | 30 | 20 | 50 |
P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com