16.在復(fù)平面上復(fù)數(shù)-3-2i,-4+5i,2+i所對應(yīng)的點分別是A、B、C,則平行四邊形ABCD的對角線BD所對應(yīng)的復(fù)數(shù)是7-11i.

分析 由題意畫出圖形,根據(jù)A,B,C所對應(yīng)的復(fù)數(shù)分別為-3-2i、-4+5i、2+i,得到$\overrightarrow{BA}$、$\overrightarrow{BC}$所對應(yīng)的復(fù)數(shù),然后利用向量加法求得BD所對應(yīng)的復(fù)數(shù).

解答 解:如圖,
∵A,B,C所對應(yīng)的復(fù)數(shù)分別為-3-2i、-4+5i、2+i,
∴$\overrightarrow{BA}$=$\overrightarrow{OA}$-$\overrightarrow{OB}$=(-3-2i)-(-4+5i)=1-7i,
$\overrightarrow{BC}$=$\overrightarrow{OC}$-$\overrightarrow{OB}$=(2+i)-(-4+5i)=6-4i,
$\overrightarrow{BD}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$=(1-7i)+(6-4i)=7-11i.
故答案為:7-11i.

點評 本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,考查了復(fù)數(shù)的加減法運算,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線x2=2py上點P處的切線方程為x-y-1=0.
(1)求拋物線的方程;
(2)設(shè)A(x1,y1)和B(x2,y2)為拋物線上的兩個動點,其中y1=y2且y1+y2=4,線段AB的垂直平分線l與y軸交于點C,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,AD∥BC,且AD=2BC,AD⊥CD,PA=PD,M為棱AD的中點.
(1)求證:CD∥平面PBM;
(2)求證:平面PAD⊥平面PBM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知定義在R上的函數(shù)y=f(x)的導(dǎo)函數(shù)為f′(x),且滿足f′(x)<f(x),f(0)=1,則不等式$\frac{f(x)}{{e}^{x}}$<1的解集為( 。
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=|x+2|,g(x)=a-|x-4|,若函數(shù)f(x)的圖象恒在函數(shù)g(x)的圖象的上方,則實數(shù)a的取值范圍是(-∞,6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.甲同學(xué)練習(xí)投籃,每次投籃命中的概率為$\frac{1}{3}$,如果甲投籃3次,則甲至多有1次投籃命中的概率為(  )
A.$\frac{20}{27}$B.$\frac{4}{9}$C.$\frac{8}{27}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知拋物線C:y2=2px(p>0)的焦點是F,點D(1,y0)是拋物線C上的點,且|$\overrightarrow{DF}$|=3.
(1)若直線l經(jīng)過點E(1,2)交拋物線C于A、B兩點,當(dāng)AE=4EB時,求直線l的方程;
(2)已知點M(m,0)(m>0),過點M作直線l1交拋物線C于P、Q兩點,G是線段PQ的中點,過點M作與直線l1垂直的直線l2交拋物線C于S、T兩點,H是線段ST的中點(如圖所示),求△MGH面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若z∈C,則“|Rez|≤1,|Imz|≤1”是“|z|≤1”成立的     條件.( 。
A.充分非必要B.必要非充分
C.充要D.既非充分又非必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)函數(shù)f(x)=ax5+bx3+cx+1,且f(-2)=3,f(2)的值為-1.

查看答案和解析>>

同步練習(xí)冊答案