3.設(shè)全集U={1,3,5},集合A={1,5},則∁UA={3}.

分析 根據(jù)補(bǔ)集的定義寫出運算結(jié)果即可.

解答 解:全集U={1,3,5},集合A={1,5},
則∁UA={3}.
故答案為:{3}.

點評 本題考查了集合的定義與應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.通過$\widehat{{e}_{1}}$,$\widehat{{e}_{2}}$,…,$\widehat{{e}_{n}}$來判斷模擬型擬合的效果,判斷原始數(shù)據(jù)中是否存在可疑數(shù)據(jù),這種分工稱為(  )
A.回歸分析B.獨立性檢驗分析C.殘差分析D.散點圖分析

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,等腰梯形ABCD中,AB=4,BC=CD=2,若E、F分別是邊BC、AB上的點,且滿足$\frac{BE}{BC}$=$\frac{AF}{AB}$=λ,當(dāng)$\overrightarrow{AE}$•$\overrightarrow{DF}$=0時,則有( 。
A.λ∈($\frac{1}{8}$,$\frac{1}{4}$)B.λ∈($\frac{1}{4}$,$\frac{3}{8}$)C.λ∈($\frac{3}{8}$,$\frac{1}{2}$)D.λ∈($\frac{1}{2}$,$\frac{5}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)y=sin(x-$\frac{π}{12}$)圖象上的點P($\frac{π}{4}$,t)向左平移s(s>0)個單位,得到點P′,若P′位于函數(shù)y=sin2x的圖象上,則( 。
A.t=$\frac{1}{2}$,s的最小值為$\frac{π}{6}$B.t=$\frac{\sqrt{3}}{2}$,s的最小值為$\frac{π}{6}$
C.t=$\frac{1}{2}$,s的最小值為$\frac{π}{12}$D.t=$\frac{\sqrt{3}}{2}$,s的最小值為$\frac{π}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知y=f(x)是R上的奇函數(shù),f(-1)=-1,且對任意x∈(-∞,0),f(x)=$\frac{1}{x}$f($\frac{x}{x-1}$)都成立.
(1)求f(-$\frac{1}{2}$)、f(-$\frac{1}{3}$)的值;
(2)設(shè)an=f($\frac{1}{n}$)(n∈N*),求數(shù)列{an}的遞推公式和通項公式;
(3)記Tn=a1an+a2an-1+a3an-2+…+ana1,求$\underset{lim}{n→∞}$$\frac{{T}_{n+1}}{{T}_{n}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)滿足f(x+1)=2x+3,若f(m)=3,則m=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列說法中,正確的是④.(填序號)
①若函數(shù)f(x)滿足f(x)<f(x+1)對一切實數(shù)x成立,則f(x)是增函數(shù);
②若函數(shù)滿足|f(-x)|<|f(x)|對一切實數(shù)x成立,則是奇函數(shù)或是偶函數(shù);
③若函數(shù)f(x)滿足f(1-x)=f(x+1)對一切實數(shù)x成立,則f(x)的圖象關(guān)于y軸對稱;
④若函數(shù)f(x)滿足f(1-x)=f(x-1)對一切實數(shù)x成立,則f(x)的圖象關(guān)于y軸對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x|x2-3x+2<0},B={x|3-x>0},則A∩B=( 。
A.(2,3)B.(1,3)C.(1,2)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.2017是等差數(shù)列4,7,10,13,…的第幾項( 。
A.669B.670C.671D.672

查看答案和解析>>

同步練習(xí)冊答案