8.已知函數(shù)f(x)滿足f(x+1)=2x+3,若f(m)=3,則m=1.

分析 求出函數(shù)的解析式,代值計算即可

解答 解:∵f(x+1)=2x+3=2(x+1)+1,
∴f(x)=2x+1,
∵f(m)=3,
∴2m+1=3,
解得m=1,
故答案為:1

點(diǎn)評 本題考查函數(shù)的解析式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在平面直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=sinα\end{array}\right.$(α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為$ρcos({θ-\frac{π}{4}})=-\frac{{\sqrt{2}}}{2}$,曲線C3:ρ=2sinθ.
(1)求曲線C1與曲線C2交點(diǎn)M的直角坐標(biāo);
(2)設(shè)點(diǎn)A,B分別是曲線曲線C2,C3上的動點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某餐廳裝修,需要大塊膠合板20張,小塊膠合板50張.已知市場出售A、B兩種不同規(guī)格的膠合板,經(jīng)過測算,A種規(guī)格的膠合板可同時裁得大塊膠合板2張,小塊膠合板6張,B種規(guī)格的膠合板可同時裁得大塊膠合板1張,小塊膠合板2張.已知A種規(guī)格膠合板每張200元,B種規(guī)格膠合板每張72元,分別用x,y表示購買A、B兩種不同規(guī)格膠合板的張數(shù).
(Ⅰ)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)根據(jù)施工需求,A,B兩種不同規(guī)格的膠合板各買多少張花費(fèi)資金最少?并求出最少資金數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,∠PAQ是某海灣旅游區(qū)的一角,其中∠PAQ=120°,為了營造更加優(yōu)美的旅游環(huán)境,旅游區(qū)管委員會決定在直線海岸AP和AQ上分別修建觀光長廊AB和AC,其中AB是寬長廊,造價是800元/米;AC是窄長廊,造價是400元/米;兩段長廊的總造價為120萬元,同時在線段BC上靠近點(diǎn)B的三等分點(diǎn)D處建一個觀光平臺,并建水上直線通道AD(平臺大小忽略不計),水上通道的造價是1000元/米.
(1)若規(guī)劃在三角形ABC區(qū)域內(nèi)開發(fā)水上游樂項目,要求△ABC的面積最大,那么AB和AC的長度分別為多少米?
(2)在(1)的條件下,建直線通道AD還需要多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)全集U={1,3,5},集合A={1,5},則∁UA={3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)$y=\frac{ax+2}{x+2}$在區(qū)間(-2,+∞)上是增函數(shù),則a的取值范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2log3(3-x)-log3(1+x).
(1)求f(x)的定義域;
(2)當(dāng)0≤x≤2時,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知直線l:y=kx+$\sqrt{3}$與y軸的交點(diǎn)是橢圓C:x2+$\frac{y^2}{m}=1({m>0})$的一個焦點(diǎn).
(1)求橢圓C的方程;
(2)若直線l與橢圓C交于A、B兩點(diǎn),是否存在k使得以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若(1+$\sqrt{3}$)5=a+b$\sqrt{3}$(a,b為有理數(shù)),則b=44.

查看答案和解析>>

同步練習(xí)冊答案