已知:圓C過(guò)點(diǎn)A(6,0),B(1,5)且圓心在直線上,求圓C的方程。

.

解析試題分析:由圓C過(guò)A和B點(diǎn),得到AB為圓C的弦,求出線段AB垂直平分線的方程,根據(jù)垂徑定理得到圓心C在此方程上,方法是利用中點(diǎn)坐標(biāo)公式求出線段AB的中點(diǎn),根據(jù)直線AB的斜率,利用兩直線垂直時(shí)斜率的乘積為-1求出線段AB垂直平分線的斜率,由求出的中點(diǎn)坐標(biāo)和斜率寫出線段AB垂直平分線的方程,與直線l聯(lián)立組成方程組,求出方程組的解即可確定出圓心C的坐標(biāo),然后再根據(jù)兩點(diǎn)間的距離公式求出|AC|的長(zhǎng)即為圓C的半徑,由圓心和半徑寫出圓C的標(biāo)準(zhǔn)方程即可.
解法1:設(shè)所求圓的方程為。由題意可得,
解得:  所以求圓C的方程為.
解法2:求出AB垂直平分線方程聯(lián)立方程組
求出半徑,寫出圓C的方程為.
考點(diǎn):此題考查了中點(diǎn)坐標(biāo)公式,兩直線垂直時(shí)斜率滿足的關(guān)系,垂徑定理及兩點(diǎn)間的距離公式,理解圓中弦的垂直平分線一定過(guò)圓心是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,(其中為參數(shù),),在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,曲線的極坐標(biāo)方程為
(1)把曲線的方程化為直角坐標(biāo)方程;
(2)若曲線上恰有三個(gè)點(diǎn)到曲線的距離為,求曲線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知?jiǎng)訄A
(1)當(dāng)時(shí),求經(jīng)過(guò)原點(diǎn)且與圓相切的直線的方程;
(2)若圓與圓內(nèi)切,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn),直線.設(shè)圓的半徑為,圓心在上.
(1)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線的方程;
(2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

求圓心在直線上,與軸相切,且被直線截得的弦長(zhǎng)為的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知曲線C:
(1)當(dāng)為何值時(shí),曲線C表示圓;
(2)在(1)的條件下,若曲線C與直線交于M、N兩點(diǎn),且,求的值.
(3)在(1)的條件下,設(shè)直線與圓交于,兩點(diǎn),是否存在實(shí)數(shù),使得以為直徑的圓過(guò)原點(diǎn),若存在,求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓滿足:
①截y軸所得弦長(zhǎng)為2;
②被x軸分成兩段圓弧,其弧長(zhǎng)的比為.
求在滿足條件①②的所有圓中,使代數(shù)式取得最小值時(shí),圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

過(guò)點(diǎn)Q(-2,)作圓O:x2+y2=r2(r>0)的切線,切點(diǎn)為D,且|QD|=4.
(1)求r的值.
(2)設(shè)P是圓O上位于第一象限內(nèi)的任意一點(diǎn),過(guò)點(diǎn)P作圓O的切線l,且l交x軸于點(diǎn)A,交y軸于點(diǎn)B,設(shè)=+,求||的最小值(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,圓的外接圓,過(guò)點(diǎn)C的切線交的延長(zhǎng)線于點(diǎn),,.則的長(zhǎng)為           的長(zhǎng)為           

查看答案和解析>>

同步練習(xí)冊(cè)答案