分析 由增函數(shù)的定義知,得到此函數(shù)是一個增函數(shù),由此關(guān)系得出a的取值范圍即可.
解答 解:根據(jù)題意,由增函數(shù)的定義知,此函數(shù)是一個增函數(shù);
故有$\left\{\begin{array}{l}{a<0}\\{a+3>0}\\{1≤a+3+4a}\end{array}\right.$,解得-$\frac{2}{5}$≤a<0,
則a的取值范圍是[-$\frac{2}{5}$,0),
故答案為:[-$\frac{2}{5}$,0).
點評 本題考查函數(shù)的連續(xù)性,解題本題關(guān)鍵是根據(jù)題設(shè)中的條件得出函數(shù)是一個增函數(shù),再有增函數(shù)的圖象特征得出參數(shù)所滿足的不等式,這是此類題轉(zhuǎn)化常的方式,本題考查了推理論證的能力及轉(zhuǎn)化的思想.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈R,x<sinx且x>tanx | B. | ?x∈R,x≥sinx或x≤tanx | ||
C. | ?x∈R,x<sinx或x>tanx | D. | ?x∈R,x≥sinx且x≤tanx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x+1 | B. | f(x)=3x2-1 | C. | f(x)=2(x+1)3-1 | D. | f(x)═-$\frac{4}{x}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com