【題目】設(shè)向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O為坐標(biāo)原點(diǎn),a>0,b>0,若A、B、C三點(diǎn)共線,則 的最小值為

【答案】8
【解析】解:向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O為坐標(biāo)原點(diǎn),a>0,b>0, ∴ = =(a﹣1,1), = =(﹣b﹣1,2),
∵A、B、C三點(diǎn)共線,

,
解得2a+b=1,
=( )(2a+b)=2+2+ ≥4+2 =8,當(dāng)且僅當(dāng)a= ,b= ,取等號(hào),
的最小值為8,
所以答案是:8
【考點(diǎn)精析】本題主要考查了基本不等式的相關(guān)知識(shí)點(diǎn),需要掌握基本不等式:,(當(dāng)且僅當(dāng)時(shí)取到等號(hào));變形公式:才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知F是雙曲線 =1(a>0,b>0)的右焦點(diǎn),A,B分別為其左、右頂點(diǎn).O為坐標(biāo)原點(diǎn),D為其上一點(diǎn),DF⊥x軸.過(guò)點(diǎn)A的直線l與線段DF交于點(diǎn)E,與y軸交于點(diǎn)M,直線BE與y軸交于點(diǎn)N,若3|OM|=2|ON|,則雙曲線的離心率為(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=﹣f(x),當(dāng)x∈[0,1]時(shí),f(x)=2x﹣1,則(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,錯(cuò)誤的命題個(gè)數(shù)有(

為奇函數(shù)的必要非充分條件;

②函數(shù)是偶函數(shù);

③函數(shù)的最小值是;

④函數(shù)的定義域?yàn)?/span>,且對(duì)其內(nèi)任意實(shí)數(shù)、均有:,則上是減函數(shù).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列命題:
①存在實(shí)數(shù)α使
②直線 是函數(shù)y=sinx圖象的一條對(duì)稱軸.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,則tanα>tanβ.
其中正確命題的題號(hào)為( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分10)

某單位建造一間地面面積為12m2的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長(zhǎng)度x不得超過(guò)米,房屋正面的造價(jià)為400/m2,房屋側(cè)面的造價(jià)為150/m2,屋頂和地面的造價(jià)費(fèi)用合計(jì)為5800元,如果墻高為3m,且不計(jì)房屋背面的費(fèi)用.

1)把房屋總造價(jià)表示成的函數(shù),并寫(xiě)出該函數(shù)的定義域.

2)當(dāng)側(cè)面的長(zhǎng)度為多少時(shí),總造價(jià)最底?最低總造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)yfx)是偶函數(shù),當(dāng)x0時(shí),;當(dāng)x[3,﹣1]時(shí),記fx)的最大值為m,最小值為n,則mn________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】司機(jī)在開(kāi)機(jī)動(dòng)車時(shí)使用手機(jī)是違法行為,會(huì)存在嚴(yán)重的安全隱患,危及自己和他人的生命.為了研究司機(jī)開(kāi)車時(shí)使用手機(jī)的情況,交警部門(mén)調(diào)查了100名機(jī)動(dòng)車司機(jī),得到以下統(tǒng)計(jì):在55名男性司機(jī)中,開(kāi)車時(shí)使用手機(jī)的有40人,開(kāi)車時(shí)不使用手機(jī)的有15人;在45名女性司機(jī)中,開(kāi)車時(shí)使用手機(jī)的有20人,開(kāi)車時(shí)不使用手機(jī)的有25人.
(Ⅰ)完成下面的2×2列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為開(kāi)車時(shí)使用手機(jī)與司機(jī)的性別有關(guān);

開(kāi)車時(shí)使用手機(jī)

開(kāi)車時(shí)不使用手機(jī)

合計(jì)

男性司機(jī)人數(shù)

女性司機(jī)人數(shù)

合計(jì)

(Ⅱ)以上述的樣本數(shù)據(jù)來(lái)估計(jì)總體,現(xiàn)交警部門(mén)從道路上行駛的大量機(jī)動(dòng)車中隨機(jī)抽檢3輛,記這3輛車中司機(jī)為男性且開(kāi)車時(shí)使用手機(jī)的車輛數(shù)為X,若每次抽檢的結(jié)果都相互獨(dú)立,求X的分布列和數(shù)學(xué)期望E(X).
參考公式與數(shù)據(jù): ,其中n=a+b+c+d.

P(Χ2≥k0

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列命題中:①兩個(gè)函數(shù)的對(duì)應(yīng)法則和值域相同,則這兩個(gè)是同一個(gè)函數(shù);②上單調(diào)遞增,③若函數(shù)的定義域?yàn)?/span>,則函數(shù)的定義域?yàn)?/span>;④若函數(shù)在其定義域內(nèi)不是單調(diào)函數(shù),則不存在反函數(shù);⑤函數(shù)的最小值為4;⑥若關(guān)于的不等式區(qū)間內(nèi)恒成立,則實(shí)數(shù)m的范圍是其中真命題的序號(hào)有_________.

查看答案和解析>>

同步練習(xí)冊(cè)答案