【題目】在四棱錐中,底面是正方形,交于點(diǎn),底面的中點(diǎn).

1)求證:平面;

2)求證:

3)若,求三棱錐的體積.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3.

【解析】

1)連接,利用中位線的性質(zhì)得出,然后利用直線與平面平行的判定定理可證明出平面;

2)由正方形的基本性質(zhì)得出,由平面得出,利用直線與平面垂直的判定定理證明出平面,由此可得出;

3)取的中點(diǎn),利用中位線的性質(zhì)結(jié)合平面得出平面,計(jì)算出的面積,然后利用錐體的體積公式可計(jì)算出三棱錐的體積.

1)連接,如下圖:

由四邊形是正方形可知,點(diǎn)的中點(diǎn),

的中點(diǎn),,

平面平面,平面

2)由底面,底面,

四邊形是正方形可知,.

、平面,平面.

平面;

3)取,連接,在四棱錐中,底面

的中位線,,底面.

,.

因此,三棱錐的體積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴(yán)重問(wèn)題.實(shí)踐證明, 聲音強(qiáng)度(分貝)由公式 (為非零常數(shù))給出,其中為聲音能量.

(1)當(dāng)聲音強(qiáng)度滿足時(shí),求對(duì)應(yīng)的聲音能量滿足的等量關(guān)系式;

(2)當(dāng)人們低聲說(shuō)話,聲音能量為時(shí),聲音強(qiáng)度為30分貝;當(dāng)人們正常說(shuō)話,聲音能量為時(shí),聲音強(qiáng)度為40分貝.當(dāng)聲音能量大于60分貝時(shí)屬于噪音,一般人在100分貝~120分貝的空間內(nèi),一分鐘就會(huì)暫時(shí)性失聰.問(wèn)聲音能量在什么范圍時(shí),人會(huì)暫時(shí)性失聰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:若兩個(gè)橢圓的離心率相等,則稱兩個(gè)橢圓是相似的.如圖,橢圓與橢圓是相似的兩個(gè)橢圓,并且相交于上下兩個(gè)頂點(diǎn),橢圓的長(zhǎng)軸長(zhǎng)是4,橢圓長(zhǎng)軸長(zhǎng)是2,點(diǎn)分別是橢圓的左焦點(diǎn)與右焦點(diǎn).

1)求橢圓,的方程;

2)過(guò)的直線交橢圓于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四面體SABC中若三條側(cè)棱SA,SB,SC兩兩互相垂直,且SA=1,SB=,SC=,則四面體ABCD的外接球的表面積為( )

A.8πB.6πC.4πD.2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的左、右焦點(diǎn)分別為,,離心率為,點(diǎn)在橢圓C上,且,F1MF2的面積為.

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)已知直線l與橢圓C交于A,B兩點(diǎn),,若直線l始終與圓相切,求半徑r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種飲料,每天進(jìn)貨量相同,進(jìn)貨成本每瓶3元,售價(jià)每瓶5元,每天未售出的飲料最后打4折當(dāng)天全部處理完根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫單位:有關(guān)如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為100瓶為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表:

最高氣溫

天數(shù)

2

16

36

25

7

4

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

求六月份這種飲料一天的需求量單位:瓶的分布列,并求出期望EX;

設(shè)六月份一天銷(xiāo)售這種飲料的利潤(rùn)為單位:元,且六月份這種飲料一天的進(jìn)貨量為單位:瓶,請(qǐng)判斷Y的數(shù)學(xué)期望是否在時(shí)取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:極坐標(biāo)與參數(shù)方程

在極坐標(biāo)系下,已知圓O和直線

1求圓O和直線l的直角坐標(biāo)方程;

2當(dāng)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭為了解冬季用電量(度)與氣溫之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某5天的用電量與當(dāng)天氣溫,并制作了對(duì)照表,經(jīng)過(guò)統(tǒng)計(jì)分析,發(fā)現(xiàn)氣溫在一定范圍內(nèi)時(shí),用電量與氣溫具有線性相關(guān)關(guān)系:

0

1

2

3

4

(度)

15

12

11

9

8

1)求出用電量關(guān)于氣溫的線性回歸方程;

2)在這5天中隨機(jī)抽取兩天,求至少有一天用電量低于10(度)的概率.

(附:回歸直線方程的斜率和截距的最小二乘法估計(jì)公式為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上為增函數(shù),求的取值范圍;

(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作,,且,證明:為自然對(duì)數(shù)).

查看答案和解析>>

同步練習(xí)冊(cè)答案