15.已知a>0,設(shè)p:實(shí)數(shù)x滿足x2-4ax+3a2<0,q:實(shí)數(shù)x滿足(x-3)2<1.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

分析 (1)若a=1,分別求出p,q成立的等價(jià)條件,利用p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)利用¬p是¬q的充分不必要條件,即q是p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

解答 解:(1)由x2-4ax+3a2<0得(x-a)(x-3a)<0
當(dāng)a=1時(shí),1<x<3,即p為真時(shí)實(shí)數(shù)x的取值范圍是1<x<3.…(2分)
由(x-3)2<1,得2<x<4,
即q為真時(shí)實(shí)數(shù)x的取值范圍是2<x<4.…(4分)
因?yàn)閜∧q為真,所以p真且q真,
所以實(shí)數(shù)x的取值范圍是2<x<3.…(6分)
(2)由x2-4ax+3a2<0得(x-a)(x-3a)<0,
所以,p為真時(shí)實(shí)數(shù)x的取值范圍是a<x<3a.…(8分)
因?yàn)?p是?q的充分不必要條件,即q是p的充分不必要條件
所以a≤2且且4≤3a                        …(10分)
所以實(shí)數(shù)a的取值范圍為:$[{\frac{4}{3},2}]$.                              …(12分)

點(diǎn)評(píng) 本題主要考查復(fù)合命題與簡(jiǎn)單命題之間的關(guān)系,利用逆否命題的等價(jià)性將¬p是¬q的充分不必要條件,轉(zhuǎn)化為q是p的充分不必要條件是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若圓(x-1)2+(y+1)2=r2上有且只有兩個(gè)點(diǎn)到直線x-y+1=0的距離等于$\frac{{\sqrt{2}}}{2}$,則半徑r的取值范圍是( 。
A.$(\sqrt{2},2\sqrt{2}]$B.$(\sqrt{2},2\sqrt{2})$C.$[\sqrt{2},2\sqrt{2})$D.$[\sqrt{2},2\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a>0,b>0,且a+b=1.
(1)若ab<m恒成立,求m的取值范圍;
(2)若$\frac{4}{a}$+$\frac{1}$≥|2x-1|-|x+2|恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)x∈R,則“|x+1|<1”是“x2+x-2<0”的( 。l件.
A.充分而不必要B.必要而不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)f(x)=ln(x2-2x-8)的單調(diào)遞增區(qū)間是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知平面直角坐標(biāo)系內(nèi)三點(diǎn)A、B、C在一條直線上,滿足$\overrightarrow{OA}$=(-3,m+1),$\overrightarrow{OB}$=(n,3),$\overrightarrow{OC}$=(7,4),且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,其中O為坐標(biāo)原點(diǎn).
(1)求實(shí)數(shù)m、n的值;
(2)若點(diǎn)A的縱坐標(biāo)小于3,求cos∠AOC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.現(xiàn)在頸椎病患者越來越多,甚至大學(xué)生也出現(xiàn)了頸椎病,年輕人患頸椎病多與工作、生活方式有關(guān),某調(diào)查機(jī)構(gòu)為了了解大學(xué)生患有頸椎病是否與長(zhǎng)期過度使用電子產(chǎn)品有關(guān),在遂寧市中心醫(yī)院隨機(jī)的對(duì)入院的50名大學(xué)生進(jìn)行了問卷調(diào)查,得到了如下的4×4列聯(lián)表:
 未過度使用 過度使用 合計(jì)
 未患頸椎病15520
 患頸椎病102030
 合計(jì)252550
(1)是否有99.5%的把握認(rèn)為大學(xué)生患頸錐病與長(zhǎng)期過度使用電子產(chǎn)品有關(guān)?
(2)已知在患有頸錐病的10名未過度使用電子產(chǎn)品的大學(xué)生中,有3名大學(xué)生又患有腸胃炎,現(xiàn)在從上述的10名大學(xué)生中,抽取3名大學(xué)生進(jìn)行其他方面的排查,記選出患腸胃炎的學(xué)生人數(shù)為ε,求ε的分布列及數(shù)學(xué)期望.
參考數(shù)據(jù)與公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},其中n=a+b+c+d$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.分別根據(jù)下列條件,求雙曲線的標(biāo)準(zhǔn)方程.
(1)右焦點(diǎn)為$F(\sqrt{5}\;,\;0)$,離心率e=$\frac{\sqrt{5}}{2}$;
(2)實(shí)軸長(zhǎng)為4的等軸雙曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知角θ的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,終邊在直線y=3x上,則tan2θ等于-$\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案