5.已知命題p:?m∈[-1,1],不等式${a^2}-5a-3≥\sqrt{{m^2}+8}$;命題q:?x∈R,使不等式x2+ax+2≤0成立.若p∨q是真命題,¬q是真命題,求a的取值范圍.

分析 分別求出滿足條件p,¬q成立的a的范圍,取交集即可.

解答 解:若命題p是真命題,
∵m∈[-1,1],
∴2$\sqrt{2}$≤$\sqrt{{m}^{2}+8}$≤3,
∵?m∈[-1,1],不等式a2-5a-3≥$\sqrt{{m}^{2}+8}$,
∴a2-5a-3≥3,即a2-5a-6≥0,
解得:a≥6或a≤-1,
若命題¬q為真命題,q是假命題,
∴x2+ax+2≥0對x∈R恒成立,
∴△=a2-8≤0
解得-2$\sqrt{2}$≤a≤2$\sqrt{2}$,
“p或q”是真命題,?q是真命題,
p為真命題q為假命題,
即$\left\{\begin{array}{l}{a≥6或a≤-1}\\{-2\sqrt{2}≤a≤2\sqrt{2}}\end{array}\right.$,
∴a≥6或a<-2$\sqrt{2}$.

點評 本題主要考考查了復(fù)合命題的真假判定的應(yīng)用,解題的關(guān)鍵是根據(jù)已知條件分別求解p,q為真時的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某學(xué)校用系統(tǒng)抽樣的方法,從全校500名學(xué)生中抽取50名做問卷調(diào)查,現(xiàn)將500名學(xué)生編號為1,2,3,…,500,在1~10中隨機抽地抽取一個號碼,若抽到的是3號,則從11~20中應(yīng)抽取的號碼是( 。
A.14B.13C.12D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角是60°,|$\overrightarrow{a}$|=|$\overrightarrow$|=1,|x$\overrightarrow{a}$+y$\overrightarrow$|=$\sqrt{3}$(x,y∈R),則|x$\overrightarrow{a}$-y$\overrightarrow$|的最大值是( 。
A.1B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合$A=\{{2^a},cos\frac{π}{3}\}$,$B=\{lg8+3lg5,\frac{1}{2},1\}$,且A∪B=B,則實數(shù)a的值為( 。
A.log23B.log23或-1C.log23或0D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖為平面中兩個全等的直角三角形,將這兩個三角形繞著它們的對稱軸(虛線所在直線)旋轉(zhuǎn)一周得到一個幾何體,則該幾何體的體積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知在半徑為10的圓O中,弦AB的長為10.
(1)求弦AB所對的圓心角α(0<α<π)的大。
(2)求α所在的扇形弧長l及弧所在的弓形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.橢圓$\frac{x^2}{6}+\frac{y^2}{9}=1$的焦點坐標(biāo)為(0,$\sqrt{3}$),(0,-$\sqrt{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四邊形ABCD中,△ABC是邊長為2的等邊三角形,AD丄DC,AD=DC,E、F是平面ABCD同一側(cè)的兩點,BE丄平面ABCD,DF丄平面ABCD,且DF=1.
(I)若AE丄CF,求BE的值;  
(Ⅱ)求當(dāng)BE為何值時,二面角E-AC-F的大小是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知平面向量$\overrightarrow a,\overrightarrow b$滿足$|\overrightarrow a|=1,\overrightarrow{|b}|=2$,$\overrightarrow a與\overrightarrow b$的夾角為60°,則“m=1”是“$(\overrightarrow a-m\overrightarrow b)⊥\overrightarrow a$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案