【題目】設函數,則下列結論正確的是( )
A.當時,函數在上有最小值;
B.當時,函數在上有最小值;
C.對任意的實數,函數的圖象關于點對稱;
D.方程可能有三個實數根.
科目:高中數學 來源: 題型:
【題目】已知橢圓E: (a>b>0)的左焦點F1與拋物線y2=﹣4x的焦點重合,橢圓E的離心率為 ,過點M (m,0)(m> )作斜率不為0的直線l,交橢圓E于A,B兩點,點P( ,0),且 為定值.
(Ⅰ)求橢圓E的方程;
(Ⅱ)求△OAB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用收集到的6組數據對制作成如圖所示的散點圖(點旁的數據為該點坐標),并由最小二乘法計算得到回歸直線的方程:,相關系數為,相關指數為;經過殘差分析確定點為“離群點”(對應殘差過大的點),把它去掉后,再用剩下的5組數據計算得到回歸直線的方程:,相關系數為,相關指數為.則以下結論中,不正確的是( )
A. , B. ,
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商品在近30天內每件的銷售價格p(元)與時間t(天)的函數關系是該商品的日銷售量Q(件)與時間t(天)的函數關系是Q=-t+40(0<t≤30,t∈N).
(1)求這種商品的日銷售金額的解析式;
(2)求日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數,當x≥0時,f(x)=x2–2x+2.
(1)求函數f(x)的解析式;
(2)當x∈[m,n]時,f(x)的取值范圍為[2m,2n],試求實數m,n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數,且f(x﹣ )=f(x+ )恒成立,當x∈[2,3]時,f(x)=x,則當x∈(﹣2,0)時,函數f(x)的解析式為( )
A.|x﹣2|
B.|x+4|
C.3﹣|x+1|
D.2+|x+1|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形為梯形,平面,,
為中點.
(1)求證:平面平面;
(2)線段上是否存在一點,使平面?若存在,找出具體位置,并進行證明:若不存在,請分析說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線是拋物線的準線,直線,且與拋物線沒有公共點,動點在拋物線上,點到直線和的距離之和的最小值等于2.
(Ⅰ)求拋物線的方程;
(Ⅱ)點在直線上運動,過點做拋物線的兩條切線,切點分別為,在平面內是否存在定點,使得恒成立?若存在,請求出定點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,一張坐標紙上已作出圓及點,折疊此紙片,使與圓周上某點重合,每次折疊都會留下折痕,設折痕與直線的交點為,令點的軌跡為曲線.
(1)求曲線的方程;
(2)若直線與軌跡交于、兩點,且直線與以為直徑的圓相切,若,求的面積的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com