精英家教網 > 高中數學 > 題目詳情

【題目】某商品在近30天內每件的銷售價格p()與時間t()的函數關系是該商品的日銷售量Q()與時間t()的函數關系是Q=-t40(0<t≤30tN)

(1)求這種商品的日銷售金額的解析式;

(2)求日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?

【答案】(1);(2) (元),且第25天,日銷售額最大

【解析】

(1)設日銷售金額為元,由可求出解析式,注意的取值范圍;

(2)首先將函數的解析式化為二次函數的頂點式,結合二次函數的單調性即可求出函數的最值.

(1)設日銷售金額為(元),則,

所以.

所以

(2)若,,則時,(元);

,,則

時單調遞減,當時,(元),

由于,故時,(元),

所以這種商品的日銷售額最大值為元,且第天的日銷售額最大。

故得解.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】下列四個命題:

命題a=0,ab=0”的否命題是a=0,ab≠0”;

已知命題p:x∈R,x2+x+1<0,p:x∈R,x2+x+1≥0;

若命題p”與命題“pq”都是真命題,則命題q一定是真命題;

命題0<a<1,loga(a+1)<lo.

其中正確命題的序號是_____.(把所有正確的命題序號都填上)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某教師調查了名高三學生購買的數學課外輔導書的數量,將統(tǒng)計數據制成如下表格:

男生

女生

總計

購買數學課外輔導書超過

購買數學課外輔導書不超過

總計

(Ⅰ)根據表格中的數據,是否有的把握認為購買數學課外輔導書的數量與性別相關;

(Ⅱ)從購買數學課外輔導書不超過本的學生中,按照性別分層抽樣抽取人,再從這人中隨機抽取人詢問購買原因,求恰有名男生被抽到的概率.

附: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校在本校任選了一個班級,對全班50名學生進行了作業(yè)量的調查,根據調查結果統(tǒng)計后,得到如下的列聯表,已知在這50人中隨機抽取1人,認為作業(yè)量大的概率為.

認為作業(yè)量大

認為作業(yè)量不大

合計

男生

18

女生

17

合計

50

(Ⅰ)請完成上面的列聯表;

(Ⅱ)根據列聯表的數據,能否有的把握認為“認為作業(yè)量大”與“性別”有關?

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

span>5.024

6.635

10.828

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.

(1)若A∩B={2},求實數a的值;

(2)若A∪B=A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】上海中學在每學年的上學期會舉行體育嘉年華活動,假設在今年的活動中共設了8個體育項目,高一某班的班主任參加了其中的若干個項目,甲、乙、丙三位同學猜測該老師參加的項目見下表:(“×”表示未參加,“√”表示參加)

項目1

項目2

項目3

項目4

項目5

項目6

項目7

項目8

×

×

×

×

×

×

×

×

×

×

×

×

×

×

老師告訴甲、乙、丙:“你們分別猜對5次、5次、6次”,由此請你猜測該老師參加的體育項目編號依次為________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,則下列結論正確的是( )

A.時,函數上有最小值;

B.時,函數上有最小值;

C.對任意的實數,函數的圖象關于點對稱;

D.方程可能有三個實數根.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求曲線在點處的切線方程;

(2)求函數的零點和極值;

(3)若對任意,都有成立,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,當P(x,y)不是原點時,定義P的“伴隨點”為P′( , );當P是原點時,定義P的“伴隨點”為它自身,平面曲線C上所有點的“伴隨點”所構成的曲線C′定義為曲線C的“伴隨曲線”.現有下列命題:
①若點A的“伴隨點”是點A′,則點A′的“伴隨點”是點A;
②單位圓的“伴隨曲線”是它自身;
③若曲線C關于x軸對稱,則其“伴隨曲線”C′關于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是(寫出所有真命題的序列).

查看答案和解析>>

同步練習冊答案