分析 (1)根據(jù)長(zhǎng)方體的性質(zhì),結(jié)合直線和平面所成角的定義得到FEC是EF與平面ABCD所成的角,進(jìn)行求解即可;
(2)建立空間坐標(biāo)系,求出平面的法向量,利用向量法即可求二面角F-DE-C的余弦值.
解答 解:(1)在長(zhǎng)方體中,CC1⊥底面ABCD,
∴∠FEC是EF與平面ABCD所成的角,
∵E為BC的中點(diǎn),F(xiàn)為CC1的中點(diǎn),
∴CF=2,CE=1,EF=$\sqrt{C{F}^{2}+C{E}^{2}}=\sqrt{1+4}=\sqrt{5}$,
則cos∠FEC=$\frac{CE}{EF}=\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,
即EF與平面ABCD所成的角的余弦值是$\frac{\sqrt{5}}{5}$.
(2)建立如圖所示的坐標(biāo)系,
則平面DEC的法向量為$\overrightarrow{m}$=(0,0,1),
設(shè)平面FDE的法向量為$\overrightarrow{n}$=(x,y,z),
則D(0,0,0),C(0,2,0),B(2,2,0),F(xiàn)(0,2,2),E(1,2,0),
則$\overrightarrow{DF}$=(0,2,2),$\overrightarrow{DE}$=(1,2,0),
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{DF}=2y+2z=0}\\{\overrightarrow{m}•\overrightarrow{DE}=x+2y=0}\end{array}\right.$,
令y=-1,則x=2,z=1,即$\overrightarrow{n}$=(2,-1,1),
cos<$\overrightarrow{m}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{1}{1×\sqrt{4+1+1}}=\frac{1}{\sqrt{6}}$=$\frac{\sqrt{6}}{6}$,
即二面角F-DE-C的余弦值為$\frac{\sqrt{6}}{6}$.
點(diǎn)評(píng) 本題主要考查線面角以及二面角的求解,建立坐標(biāo)系,求出平面的法向量,利用向量法是解決本題的關(guān)鍵.綜合考查學(xué)生的運(yùn)算和推理能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\sqrt{3}$ | B. | 0 | C. | $\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com