用三段論證明函數(shù)在(-∞,+∞)上是增函數(shù).

根據(jù)大前提導(dǎo)數(shù)大于零的區(qū)間即為單調(diào)增區(qū)間,那么求解導(dǎo)數(shù)得到增區(qū)間的證明。

解析試題分析:證明:
. 當(dāng)時,有恒成立,
即在(-∞,+∞)上恒成立.所以在(-∞,+∞)上是增函數(shù).
考點(diǎn):函數(shù)單調(diào)性
點(diǎn)評:解決的關(guān)鍵是利用導(dǎo)數(shù)的符號來判定函數(shù)的單調(diào)性,進(jìn)而得到證明。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(1)若x=1時取得極值,求實(shí)數(shù)的值;
(2)當(dāng)時,求上的最小值;
(3)若對任意,直線都不是曲線的切線,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的圖像在點(diǎn)處的切線與直線平行.
(1)求a,b滿足的關(guān)系式;
(2)若上恒成立,求a的取值范圍;
(3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),若存在使得恒成立,則稱  是
一個“下界函數(shù)” .
(I)如果函數(shù)(t為實(shí)數(shù))為的一個“下界函數(shù)”,
求t的取值范圍;
(II)設(shè)函數(shù),試問函數(shù)是否存在零點(diǎn),若存在,求出零點(diǎn)個數(shù);
若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(I)若曲線與曲線在它們的交點(diǎn)處具有公共切線,求的值;
(II)當(dāng)時,若函數(shù)在區(qū)間內(nèi)恰有兩個零點(diǎn),求的取值范圍;
(III)當(dāng)時,求函數(shù)在區(qū)間上的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)設(shè),如果過點(diǎn)可作曲線的三條切線,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),為常數(shù),),且這兩函數(shù)的圖像有公共點(diǎn),并在該公共點(diǎn)處的切線相同.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)若時,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)函數(shù).
(1)若的兩個極值點(diǎn)為,且,求實(shí)數(shù)的值;
(2)是否存在實(shí)數(shù),使得上的單調(diào)函數(shù)?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分15分)
已知函數(shù)的導(dǎo)函數(shù)(為自然對數(shù)的底數(shù))
(Ⅰ)解關(guān)于的不等式:;
(Ⅱ)若有兩個極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案