【題目】設函數(shù)
(1)當時,求函數(shù)的單調(diào)區(qū)間;
(2)當時,方程在區(qū)間內(nèi)有唯一實數(shù)解,求實數(shù)的取值范圍
【答案】(Ⅰ)單調(diào)增區(qū)間為,減區(qū)間為;(Ⅱ).或
【解析】
試題分析:(Ⅰ)先確定函數(shù)定義域,再求導函數(shù),進而求定義區(qū)間上導函數(shù)的零點,最后列表分析導函數(shù)符號:當時,;當時,,確定單調(diào)區(qū)間:增區(qū)間為,減區(qū)間為;(Ⅱ)化簡方程得,變量分離得,利用導數(shù)研究函數(shù)單調(diào)性變化規(guī)律:在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).最后結(jié)合圖像確定有唯一解的條件:.或
試題解析:(1)依題意,知的定義域為,
當時,,
…………………………………2分
令,解得或(舍去),
當時,;當時,,
所以的單調(diào)增區(qū)間為,減區(qū)間為; …………………5分
(2)當時,,
由,得,又,所以,
要使方程在區(qū)間上有唯一實數(shù)解,
只需有唯一實數(shù)解, ………………………7分
令,
∴,
由得; ,得,
∴在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù).
,故 .或……………13分
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: 的焦點為,過點的直線與相交于、兩點,點關(guān)于軸的對稱點為.
(Ⅰ)判斷點是否在直線上,并給出證明;
(Ⅱ)設,求的內(nèi)切圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)統(tǒng)計,某醫(yī)院一個結(jié)算窗口每天排隊結(jié)算的人數(shù)及相應的概率如下:
排除人數(shù) | 0--5 | 6--10 | 11--15 | 16--20 | 21--25 | 25人以上 |
概率 | 0.1 | 0.15 | 0.25 | 0.25 | 0.2 | 0.05 |
(1)求每天超過20人排隊結(jié)算的概率;
(2)求2天中,恰有1天出現(xiàn)超過20人排隊結(jié)算的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】A已知直線的參數(shù)方程為(為參數(shù)),在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,圓的方程為
(1)求圓的圓心的極坐標;
(2)判斷直線與圓的位置關(guān)系.
已知不等式的解集為
(1)求實數(shù)的值;
(2)若不等式對恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)設,是曲線圖象上的兩個相異的點,若直線的斜率恒成立,求實數(shù)的取值范圍.
(3)設函數(shù)有兩個極值點,且,若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以下四個命題:
①對立事件一定是互斥事件;
②函數(shù)的最小值為2;
③八位二進制數(shù)能表示的最大十進制數(shù)為256;
④在中,若, , ,則該三角形有兩解.
其中正確命題的個數(shù)為( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)定義域為,且對任意實數(shù),有,則稱為“形函數(shù)”,若函數(shù)定義域為,函數(shù)對任意恒成立,且對任意實數(shù),有,則稱為“對數(shù)形函數(shù)” .
(1)試判斷函數(shù)是否為“形函數(shù)”,并說明理由;
(2)若是“對數(shù)形函數(shù)”,求實數(shù)的取值范圍;
(3)若是“形函數(shù)”,且滿足對任意,有,問是否為“對數(shù)形函數(shù)”?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下表提供了某廠生產(chǎn)某產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸標準煤)的幾組對照數(shù)據(jù):
2 | 4 | 6 | 8 | 10 | |
4 | 5 | 7 | 9 | 10 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)根據(jù)(1)中求出的線性回歸方程,預測生產(chǎn)20噸該產(chǎn)品的生產(chǎn)能耗是多少噸標準煤?
附:回歸直線的斜率和截距的最小二乘估計分別為: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,摩天輪的半徑為米,點距地面高度為米,摩天輪做勻速運動,每分鐘轉(zhuǎn)一圈,以點為原點,過點且平行與地平線的直線為軸建立平面直角坐標系,設點的起始位置在最低點(且在最低點開始時),設在時刻(分鐘)時點距地面的高度(米),則與的函數(shù)關(guān)系式
__________.在摩天輪旋轉(zhuǎn)一周內(nèi),點到地面的距離不小于米的時間長度為 __________(分鐘)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com