【題目】下表提供了某廠生產(chǎn)某產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應的生產(chǎn)能耗(噸標準煤)的幾組對照數(shù)據(jù):
2 | 4 | 6 | 8 | 10 | |
4 | 5 | 7 | 9 | 10 |
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程;
(2)根據(jù)(1)中求出的線性回歸方程,預測生產(chǎn)20噸該產(chǎn)品的生產(chǎn)能耗是多少噸標準煤?
附:回歸直線的斜率和截距的最小二乘估計分別為: .
【答案】(1);(2)生產(chǎn)20噸該產(chǎn)品的生產(chǎn)能耗大約是18.2噸標準煤.
【解析】試題分析:1)產(chǎn)量x與相應的生產(chǎn)能耗y的平均數(shù),得到樣本中心點,把所給的數(shù)據(jù)代入公式,利用最小二乘法求出線性回歸方程的系數(shù),再求出的值,從而得到線性回歸方程;
(2)當x=20,代入回歸直線方程,求得.
試題解析:
(1)由題意,得,
,
,
則,,
故線性回歸方程為;
(2)當噸時,產(chǎn)品消耗的標準煤的數(shù)量為:
,
答:生產(chǎn)20噸該產(chǎn)品的生產(chǎn)能耗大約是18.2噸標準煤.
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),其中.
(1)若,求函數(shù)在區(qū)間上的取值范圍;
(2)若,且對任意的,都有,求實數(shù)的取值范圍;
(3)若對任意的,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)
(1)當時,求函數(shù)的單調區(qū)間;
(2)當時,方程在區(qū)間內有唯一實數(shù)解,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,直線,設圓的半徑為1,圓心在上.
(1)若圓心也在直線上,過點作圓的切線,求切線的方程;
(2)若圓上存在點,使,求圓心的橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1在△中,,、分別為線段、的中點,,.以為折痕,將△折起到圖2的位置,使平面⊥平面,連接,,設是線段上的動點,滿足.
(1)證明:平面⊥平面;
(2)若二面角的大小為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國家實行二孩生育政策后,為研究家庭經(jīng)濟狀況對生二胎的影響,某機構在本地區(qū)符合二孩生育政策的家庭中,隨機抽樣進行了調查,得到如下的列聯(lián)表:
經(jīng)濟狀況好 | 經(jīng)濟狀況一般 | 合計 | |
愿意生二胎 | 50 | ||
不愿意生二胎 | 20 | 110 | |
合計 | 210 |
(1)請完成上面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認為家庭經(jīng)濟狀況與生育二胎有關?
(2)若采用分層抽樣的方法從愿意生二胎的家庭中隨機抽取4個家庭,則經(jīng)濟狀況好和經(jīng)濟狀況一般的家庭分別應抽取多少個?
(3)在(2)的條件下,從中隨機抽取2個家庭,求2個家庭都是經(jīng)濟狀況好的概率.
附:
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | ||
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖“月亮圖”是由曲線與構成,曲線是以原點為中點, 為焦點的橢圓的一部分,曲線是以為頂點, 為焦點的拋物線的一部分, 是兩條曲線的一個交點.
(Ⅰ)求曲線和的方程;
(Ⅱ)過作一條與軸不垂直的直線,分別與曲線依次交于四點,若為的中點, 為的中點,問: 是否為定值?若是求出該定值;若不是說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com