已知圓M:(x-1)2+(y-1)2=4,直線l過(guò)點(diǎn)P(2,3)且與圓M交于A,B兩點(diǎn),且|AB|=2
3
,求直線l的方程.
考點(diǎn):直線與圓相交的性質(zhì)
專題:直線與圓
分析:根據(jù)直線和圓相交的性質(zhì),結(jié)合弦長(zhǎng)公式即可得到結(jié)論.
解答: 解:圓心坐標(biāo)為M(1,1),半徑R=2,
∵|AB|=2
3
,
∴圓心到直線的距離d=
R2-(
AB
2
)2
=
4-(
3
)2
=
4-3
=1

若過(guò)P的直線的斜率k不存在,則直線方程為x=2,此時(shí)圓心到直線的距離d=2-1=1≠R,則不滿足條件.
若斜率k存在,則線方程為y-3=k(x-2),即kx-y+3-2k=0
則由
|k-1+3-2k|
1+k2
=
|2-k|
1+k2
=2
得|k-2|=2
1+k2

平方得3k2+4k=0,解得k=0或k=-
4
3
,
則對(duì)應(yīng)的直線方程為y=3或4x+3y-17=0.
點(diǎn)評(píng):本題主要考查直線方程的求解,根據(jù)直線和圓相交的性質(zhì)結(jié)合直線的弦長(zhǎng)公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列流程圖的繪制是否符合規(guī)則,并說(shuō)明原因.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
z
是z的共軛復(fù)數(shù),復(fù)數(shù)z=
3
+i
(1-
3
i)2
,則
z
•z
=( 。
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,輸出的S值為(  )
A、162B、200
C、242D、288

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)如圖的算法流程圖,當(dāng)輸入x的值為3時(shí),輸出的結(jié)果為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)M(x,y)與定點(diǎn)F(
P
2
,0)(P>0)和定直線x=-
P
2
得距離相等,
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)M,N是軌跡C上異于原點(diǎn)O的兩個(gè)不同點(diǎn),直線OM和ON的傾斜角分別為α和β,當(dāng)α+β=90°時(shí),求證:直線MN恒過(guò)一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+2x+y2=0的一條斜率為1的切線為l1,且與l1垂直的直線l2平分該圓,則直線l2的方程為( 。
A、x-y+1=0
B、x-y-1=0
C、x+y-1=0
D、x+y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
2
sin(2x+
π
4
)(x∈R),則該函數(shù)的最小正周期為
 
,最小值為
 
,單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

9 
1
2
-(-1)0的運(yùn)算結(jié)果是( 。
A、-4B、4C、-2D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案