(2014·大同模擬)為了得到函數(shù)y=3sin的圖象,只要把函數(shù)y=3sin的圖象上所有的點(diǎn)(  )

A.向右平行移動(dòng)個(gè)單位長度

B.向左平行移動(dòng)個(gè)單位長度

C.向右平行移動(dòng)個(gè)單位長度

D.向左平行移動(dòng)個(gè)單位長度

 

C

【解析】因?yàn)閥=3sin

=3sin,

所以要得到函數(shù)y=3sin的圖象,應(yīng)把函數(shù)y=3sin的圖象上所有點(diǎn)向右平行移動(dòng)π個(gè)單位長度.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第五章 數(shù)列(解析版) 題型:填空題

數(shù)列{an}的前n項(xiàng)和記為Sn,a1=t,點(diǎn)(Sn,an+1)在直線y=2x+1上,n∈N*,若數(shù)列{an}是等比數(shù)列,則實(shí)數(shù)t=______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第九章計(jì)數(shù)原理與概率隨機(jī)變量及其分布(解析版) 題型:解答題

(2014·長春模擬)對(duì)甲、乙兩名自行車賽手在相同條件下進(jìn)行了6次測試,測得他們的最大速度(m/s)的數(shù)據(jù)如下表:

27

38

30

37

35

31

33

29

38

34

28

36

 

(1)畫出莖葉圖.

(2)分別求出甲、乙兩名自行車賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、方差,并判斷選誰參加比賽更合適?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:解答題

(2014·鄖陽模擬)設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,(a+b+c)(a-b+c)=ac.

(1)求B.

(2)若sinAsinC=,求C.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:填空題

(2014·保定模擬)若函數(shù)f(x)=sin(3x+φ),滿足f(a+x)=f(a-x),則f的值為____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題

給出下列命題:

①第二象限角大于第一象限角;

②三角形的內(nèi)角是第一象限角或第二象限角;

③不論用角度制還是用弧度制度量一個(gè)角,它們與扇形所對(duì)半徑的大小無關(guān);

④若sinα=sinβ,則α與β的終邊相同;

⑤若cosθ<0,則θ是第二或第三象限的角.

其中正確命題的個(gè)數(shù)是(  )

A.1     B.2     C.3     D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第七章 立體幾何(解析版) 題型:填空題

(2014·荊州模擬)湖面上漂著一個(gè)小球,湖水結(jié)冰后將球取出,冰面上留下了一個(gè)直徑為12cm,深2cm的空穴,則該球的半徑是________cm,表面積是________cm2.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:解答題

某幼兒園準(zhǔn)備建一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤的外圍是一個(gè)周長為k米的圓.在這個(gè)圓上安裝座位,且每個(gè)座位和圓心處的支點(diǎn)都有一根直的鋼管相連經(jīng)預(yù)算,轉(zhuǎn)盤上的每個(gè)座位與支點(diǎn)相連的鋼管的費(fèi)用為3k元/根,且當(dāng)兩相鄰的座位之間的圓弧長為x米時(shí),相鄰兩座位之間的鋼管和其中一個(gè)座位的總費(fèi)用為k元.假設(shè)座位等距分布,且至少有兩個(gè)座位,所有座位都視為點(diǎn),且不考慮其他因素,記轉(zhuǎn)盤的總造價(jià)為y元.

(1)試寫出y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;

(2)當(dāng)k=50米時(shí),試確定座位的個(gè)數(shù),使得總造價(jià)最低?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:解答題

如圖所示,PA⊥平面ABC,點(diǎn)C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點(diǎn)E為線段PB的中點(diǎn),點(diǎn)M在弧AB上,且OM∥AC.

(1)求證:平面MOE∥平面PAC.

(2)求證:平面PAC⊥平面PCB.

(3)設(shè)二面角M—BP—C的大小為θ,求cos θ的值.

 

查看答案和解析>>

同步練習(xí)冊答案