【題目】已知函數(shù)f(x)g(x)(a>0,且a≠1).

(1)求函數(shù)φ(x)f(x)g(x)的定義域;

(2)試確定不等式f(x)≤g(x)x的取值范圍.

【答案】1.(2)見解析.

【解析】

(1) 函數(shù)φ(x)f(x)g(x)的定義域為f(x) g(x)定義域的交集,列出方程組求解即可. (2) f(x)≤g(x),即為,對,兩種情況分類討論,即可求出x的取值范圍.

解:(1)φ(x)f(x)g(x)的定義域為:,解得:,所以定義域為.

(2) f(x)≤g(x),即為,定義域為.

時,,解得:,所以x的取值范圍為.

時,,解得:,所以x的取值范圍為.

綜上可得:當時,x的取值范圍為.

時,x的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1EBC的中點.

1)求證:AEB1C

2)求異面直線AEA1C所成的角的大;

3)若GC1C中點,求二面角C-AG-E的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大以來,國家深入推進精準脫貧,加大資金投入,強化社會幫扶,為了更好的服務于人民,派調(diào)查組到某農(nóng)村去考察和指導工作.該地區(qū)有200戶農(nóng)民,且都從事水果種植,據(jù)了解,平均每戶的年收入為3萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),調(diào)查組和當?shù)卣疀Q定動員部分農(nóng)民從事水果加工,據(jù)估計,若能動員戶農(nóng)民從事水果加工,則剩下的繼續(xù)從事水果種植的農(nóng)民平均每戶的年收入有望提高,而從事水果加工的農(nóng)民平均每戶收入將為萬元.

1)若動員戶農(nóng)民從事水果加工后,要使從事水果種植的農(nóng)民的總年收入不低于動員前從事水果種植的農(nóng)民的總年收入,求的取值范圍;

2)在(1)的條件下,要使這200戶農(nóng)民中從事水果加工的農(nóng)民的總收入始終不高于從事水果種植的農(nóng)民的總收入,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是拋物線上的一點,過點作兩條直線,分別與拋物線相交于異于點兩點.

若直線過點的重心軸上,求直線的斜率;

若直線的斜率為1的垂心軸上,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】北方某市一次全市高中女生身高統(tǒng)計調(diào)查數(shù)據(jù)顯示:全市名高中女生的身高(單位: 服從正態(tài)分布.現(xiàn)從某高中女生中隨機抽取名測量身高,測量發(fā)現(xiàn)被測學生身高全部在之間,現(xiàn)將測量結(jié)果按如下方式分成組:第,,下圖是按上述分組方法得到的頻率分布直方圖.

(1)求這名女生身高不低于的人數(shù);

(2)在這名女生身高不低于的人中任意抽取將該人中身高排名(從高到低)在全市前名的人數(shù)記為,的數(shù)學期望.

參考數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若, ,求函數(shù)圖像上任意一點處切線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐OABCD中,OA⊥底面ABCD,且底面ABCD是邊長為2的正方形,且OA2,M,N分別為OA,BC的中點.

1)求證:直線MN平面OCD;

2)求點B到平面DMN的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機擲兩枚質(zhì)地均勻的骰子,它們向上的點數(shù)之和不超過5的概率記為p1,點數(shù)之和大于5的概率記為p2,點數(shù)之和為偶數(shù)的概率記為p3,(  )

A. p1<p2<p3 B. p2<p1<p3

C. p1<p3<p2 D. p3<p1<p2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),當時,的極大值為;當時,有極小值。求:

1的值;

2)函數(shù)的極小值。

查看答案和解析>>

同步練習冊答案