【題目】十九大以來,國家深入推進精準脫貧,加大資金投入,強化社會幫扶,為了更好的服務于人民,派調查組到某農(nóng)村去考察和指導工作.該地區(qū)有200戶農(nóng)民,且都從事水果種植,據(jù)了解,平均每戶的年收入為3萬元.為了調整產(chǎn)業(yè)結構,調查組和當?shù)卣疀Q定動員部分農(nóng)民從事水果加工,據(jù)估計,若能動員戶農(nóng)民從事水果加工,則剩下的繼續(xù)從事水果種植的農(nóng)民平均每戶的年收入有望提高,而從事水果加工的農(nóng)民平均每戶收入將為萬元.

1)若動員戶農(nóng)民從事水果加工后,要使從事水果種植的農(nóng)民的總年收入不低于動員前從事水果種植的農(nóng)民的總年收入,求的取值范圍;

2)在(1)的條件下,要使這200戶農(nóng)民中從事水果加工的農(nóng)民的總收入始終不高于從事水果種植的農(nóng)民的總收入,求的最大值.

【答案】1;(2)

【解析】

1)求得從事水果種植的農(nóng)民的總年收入,由此列不等式,解不等式求得的取值范圍.

2)從事水果加工的農(nóng)民的總收入始終不高于從事水果種植的農(nóng)民的總收入列不等式,根據(jù)分離常數(shù)法求得的取值范圍,由此求得的最大值.

1)動員戶農(nóng)民從事水果加工后,要使從事水果種植的農(nóng)民的總年收入不低于動員前從事水果種植的農(nóng)民的總年收入,則,解得.

2)由于從事水果加工的農(nóng)民的總收入始終不高于從事水果種植的農(nóng)民的總收入,則,(),

化簡得,().

由于,當且僅當時等號成立,所以,所以的最大值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知,B為AC的中點,分別以AB,AC為直徑在AC的同側作半圓,M,N分別為兩半圓上的動點不含端點A,B,,且,則的最大值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市交通部門為了對該城市共享單車加強監(jiān)管,隨機選取了100人就該城市共享單車的推行情況進行問卷調查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照分成5組,制成如圖所示頻率分直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

3)已知滿意度評分值在內的男生數(shù)與女生數(shù)3:2,若在滿意度評分值為的人中隨機抽取2人進行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內兩點M4,﹣2),N2,4.

1)求MN的垂直平分線方程;

2)直線l經(jīng)過點A3,0),且點M和點N到直線l的距離相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)解關于x的不等式x22mxm10;

(2)解關于x的不等式ax2(2a1)x20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在直三棱柱中, ,點分別是的中點.

(1)求證: ∥平面;

(2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C經(jīng)過點,兩點,且圓心C在直線.

1)求圓C的方程;

2)設,對圓C上任意一點P,在直線MC上是否存在與點M不重合的點N,使是常數(shù),若存在,求出點N坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x),g(x)(a>0,且a≠1).

(1)求函數(shù)φ(x)f(x)g(x)的定義域;

(2)試確定不等式f(x)≤g(x)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形是矩形,沿對角線折起,使得點在平面上的射影恰好落在邊上.

(1)求證:平面平面

(2)當時,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案