【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程和直線的直角坐標(biāo)方程;
(2)射線的極坐標(biāo)方程為,若射線與曲線的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).
【答案】(1);(2)2
【解析】
)(1)將參數(shù)方程消參得到普通方程,利用,把極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)系下的方程.
(2)解法一:利用極坐標(biāo)的相關(guān)特點(diǎn)進(jìn)行求解.解法二:將極坐標(biāo)轉(zhuǎn)化為直接坐標(biāo)后進(jìn)行求解.
(1)由,可得:,
所以,
所以曲線的普通方程為.
由,可得,
所以,
所以直線的直角坐標(biāo)方程為.
(2)【解法一】
曲線的方程可化為,
所以曲線的極坐標(biāo)方程為.
由題意設(shè),,
將代入,可得:,
所以或(舍去),
將代入,可得:,
所以.
【解法二】
因?yàn)樯渚的極坐標(biāo)方程為,
所以射線的直角坐標(biāo)方程為,
由解得,
由解得,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,且,,且,且,平面,.
(1)若為的中點(diǎn),為的中點(diǎn),求證:平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是、,并且經(jīng)過(guò)點(diǎn).
(1)求橢圓的方程;
(2)若直線與圓:相切,并與橢圓交于不同的兩點(diǎn)、.當(dāng),且滿足時(shí),求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年1月1日,濟(jì)南軌道交通號(hào)線試運(yùn)行,濟(jì)南軌道交通集團(tuán)面向廣大市民開(kāi)展“參觀體驗(yàn),征求意見(jiàn)”活動(dòng),市民可以通過(guò)濟(jì)南地鐵APP搶票,小陳搶到了三張?bào)w驗(yàn)票,準(zhǔn)備從四位朋友小王,小張,小劉,小李中隨機(jī)選擇兩位與自己一起去參加體驗(yàn)活動(dòng),則小王被選中的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在等腰梯形中,,,,點(diǎn)為的中點(diǎn).將沿折起,使點(diǎn)到達(dá)的位置,得到如圖所示的四棱錐,點(diǎn)為棱的中點(diǎn).
(1)求證:平面;
(2)若平面平面,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長(zhǎng)為2的等邊三角形且垂直于底, 是的中點(diǎn)。
(1)證明:直線平面;
(2)點(diǎn)在棱上,且直線與底面所成角為,求二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線y=2x﹣m與拋物線C:y2=2px(p>0)交于點(diǎn)A,B.
(1)m=p且|AB|=5,求拋物線C的方程;
(2)若m=4p,求證:OA⊥OB(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,四邊形是菱形,⊥平面且.
(1)求證:平面⊥平面;
(2)若設(shè)與平面所成夾角為,且,求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com