6.函數(shù)f(x)=$\frac{1}{lo{g}_{3}(x-2)-1}$的定義域是( 。
A.(-∞,2)B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,5)∪(5,+∞)

分析 根據(jù)函數(shù)的解析式,對數(shù)的真數(shù)大于0,且分母不為0,列出不等式組,求出解集即可.

解答 解:函數(shù)f(x)=$\frac{1}{lo{g}_{3}(x-2)-1}$,
∴$\left\{\begin{array}{l}{x-2>0}\\{{log}_{3}(x-2)-1≠0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x>2}\\{x-2≠3}\end{array}\right.$,
即x>2且x≠5;
∴f(x)的定義域是(2,5)∪(5,+∞).
故選:D.

點(diǎn)評 本題考查了求函數(shù)的定義域的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.從盛滿2升純酒精的容器里倒出1升,然后加滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒4次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.方程log3x+logx3=2的解是x=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD
(Ⅰ)證明:BD⊥PC
(Ⅱ)若AD=6,BC=2,直線PD與平面PAC所成的角為30°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求兩條漸近線為y=±$\frac{2}{3}$x,且經(jīng)過點(diǎn)P$({\sqrt{6},2})$的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{2}{{2}^{x}-1}$
(1)判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,并證明你的結(jié)論;
(2)求函數(shù)f(x)在[1,log26]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知命題p:“a>1”,命題q:“函數(shù)f(x)=ax-sinx在R上是增函數(shù)”,則命題p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=$\left\{\begin{array}{l}{(5-a)x-4a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$是(-∞,+∞)上的增函數(shù),則實(shí)數(shù)a的取值范圍是(1,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.將函數(shù)f(x)=sin(x+$\frac{5π}{6}$)圖象上各點(diǎn)的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍(縱坐標(biāo)不變),再把得到的圖象向右平移$\frac{π}{3}$個單位,得到的新圖象的函數(shù)解析式為g(x)=sin(2x+$\frac{π}{6}$),g(x)的單調(diào)遞減區(qū)間是(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$),k∈Z.

查看答案和解析>>

同步練習(xí)冊答案