14.設(shè)A(-3,0),B(3,0),若直線y=-$\frac{3\sqrt{5}}{10}$(x-5)上存在一點(diǎn)P滿足|PA|-|PB|=4,則點(diǎn)P到z軸的距離為( 。
A.$\frac{3\sqrt{5}}{4}$B.$\frac{5\sqrt{5}}{3}$C.$\frac{3\sqrt{5}}{4}$或$\frac{3\sqrt{5}}{2}$D.$\frac{5\sqrt{5}}{3}$或$\sqrt{5}$

分析 根據(jù)條件得到P的軌跡是以A,B為焦點(diǎn)的雙曲線,求出雙曲線的方程,聯(lián)立方程組求出P的坐標(biāo)即可得到結(jié)論.

解答 解:∵A(-3,0),B(3,0),P滿足|PA|-|PB|=4<|AB|,
∴P的軌跡是以A,B為焦點(diǎn)的雙曲線,其中c=3,2a=4,
則a=2,b2=9-4=5,
即雙曲線方程為$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,
若直線y=-$\frac{3\sqrt{5}}{10}$(x-5)上存在一點(diǎn)P滿足|PA|-|PB|=4,
則有$\left\{\begin{array}{l}{y=-\frac{3\sqrt{5}}{10}(x-5)}\\{\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}=1}\end{array}\right.$消去y得16x2+90x-325=0,
即(2x-5)(8x+65)=0,
得x=$\frac{5}{2}$或(x=-$\frac{65}{8}$<0舍),
此時y=$\frac{3\sqrt{5}}{4}$,
即點(diǎn)P到z軸的距離為$\frac{3\sqrt{5}}{4}$,
故選:A

點(diǎn)評 本題主要考查雙曲線方程和性質(zhì),根據(jù)條件確定雙曲線的方程,聯(lián)立方程組求出交點(diǎn)坐標(biāo)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知四棱錐P-ABCD的底面ABCD是邊長為2,銳角為60°的菱形,側(cè)棱PA⊥底面ABCD,PA=3,若點(diǎn)M是BC的中點(diǎn),則三棱錐M-PAD的體積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)與拋物線y2=20x的焦點(diǎn)重合,且其漸近線方程為y=±$\frac{4}{3}$x,則雙曲線C的方程為(  )
A.$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{36}$-$\frac{{y}^{2}}{64}$=1D.$\frac{{x}^{2}}{64}$-$\frac{{y}^{2}}{36}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知雙曲線的一條漸近線方程為y=4x,且雙曲線的焦點(diǎn)與拋物線y2=8x的焦點(diǎn)是重合的,則雙曲線的標(biāo)準(zhǔn)方程為(  )
A.$\frac{x^2}{16}-\frac{y^2}{4}=1$B.$\frac{{17{x^2}}}{4}-\frac{{17{y^2}}}{64}=1$
C.$\frac{x^2}{4}-\frac{{4{y^2}}}{5}=1$D.$\frac{x^2}{4}-\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)復(fù)數(shù)z滿足(3-4i)z=5(i是虛數(shù)單位),則z=$\frac{3}{5}+\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,點(diǎn)P在雙曲線的右支上,且|PF1|=4|PF2|,則此雙曲線的離心率e的最大值為( 。
A.$\frac{5}{4}$B.$\frac{6}{5}$C.$\frac{5}{3}$D.$\frac{8}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{5}$=l的一個焦點(diǎn)坐標(biāo)為(3,0),則該雙曲線的離心率為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一條漸近線方程$y=\sqrt{3}x$,則該雙曲線的離心率為(  )
A.$\sqrt{3}$B.2C.$\frac{1}{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.雙曲線$\frac{x^2}{4}-\frac{y^2}{5}=1$的焦距等于( 。
A.2B.4C.3D.6

查看答案和解析>>

同步練習(xí)冊答案