5.已知f(x)=|x-1|-|2x+3|.
(1)解不等式f(x)>2;
(2)關(guān)于x的不等式f(x)≤$\frac{3}{2}$a2-a的解集為R,求a的取值范圍.

分析 (1)通過討論x的范圍,求出各個區(qū)間上的x的范圍,取并集即可;
(2)求出f(x)的范圍,得到關(guān)于a的不等式,解出即可.

解答 解:(1)$\left\{\begin{array}{l}{x≤-\frac{3}{2}}\\{1-x+(2x+3)>2}\end{array}\right.$,①,
或$\left\{\begin{array}{l}{-\frac{3}{2}<x<1}\\{1-x-(2x+3)>2}\end{array}\right.$,②,
或$\left\{\begin{array}{l}{x≥1}\\{x-1-(2x+3)>2}\end{array}\right.$,③,
解①得:-2<x≤-$\frac{3}{2}$,
解②得:-$\frac{3}{2}$<x<-$\frac{4}{3}$,
解③得:x∈∅,
綜上得解集為:{x|-2<x<-$\frac{4}{3}$};
(2)f(x)=$\left\{\begin{array}{l}{x+4,x≤-\frac{3}{2}}\\{-3x-2,-\frac{3}{2}<x<1}\\{-x-4,x≥1}\end{array}\right.$,
  f(x)∈$\left\{\begin{array}{l}{(-∞,\frac{5}{2}],x≤-\frac{3}{2}}\\{(-5,\frac{5}{2}),-\frac{3}{2}<x<1}\\{(-∞,-5],x≥1}\end{array}\right.$ 
∴$\frac{3}{2}$a2-a≥$\frac{5}{2}$,解得:a≥$\frac{5}{3}$或a≤-1.

點(diǎn)評 本題考查了解絕對值不等式問題,考查函數(shù)的最值問題以及轉(zhuǎn)化思想、分類討論思想,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2}$)圖象的一條對稱軸為x=-$\frac{π}{6}$,則φ=( 。
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在定義域內(nèi)給定區(qū)間[a,b]上存在x0(a<x0<b)滿足f(x0)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)y=f(x)在區(qū)間[a,b]上的“平均值函數(shù)”,x0是它的一個均值點(diǎn).若函數(shù)f(x)=-x2+mx+1是[-1,1]上的平均值函數(shù),則實數(shù)m的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足a1=b1=3,a2=b4,a3=b13
(1)求數(shù)列{an}的{bn}通項公式;
(2)記cn=an•bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若$\frac{π}{2}$<θ<π,P=3cosθ,Q=(cosθ)3,R=(cosθ)${\;}^{\frac{1}{3}}$,則P,Q,R的大小關(guān)系為( 。
A.R<Q<PB.Q<R<PC.P<Q<RD.R<P<Q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列各函數(shù)中,最小值為2的是( 。
A.y=x+$\frac{1}{x}$B.y=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$)
C.y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$D.$y=\sqrt{x}+\frac{4}{{\sqrt{x}}}-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an},{bn}滿足a1=1且an,an+1是函數(shù)f(x)=x2-bnx+2n的兩個零點(diǎn),則b8=( 。
A.24B.32C.48D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在斜三棱柱ABC-A1B1C1中,點(diǎn)O、E分別是A1C1、AA1的中點(diǎn),AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)證明:OE∥平面AB1C1
(2)證明:AB1⊥A1C;
(3)設(shè)P是棱CC1 的中點(diǎn),求P到側(cè)面ABB1A的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{\sqrt{lo{g}_{0.5}x-1}}{2x-1}$的定義域是(0,$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊答案