15.已知函數(shù)f(x)=2sin(2x+φ)(|φ|<$\frac{π}{2}$)圖象的一條對稱軸為x=-$\frac{π}{6}$,則φ=(  )
A.$\frac{π}{6}$B.-$\frac{π}{6}$C.$\frac{π}{3}$D.-$\frac{π}{3}$

分析 根據(jù)正弦函數(shù)的圖象與性質,寫出函數(shù)的對稱軸,再結合題意求出φ的值.

解答 解:函數(shù)f(x)=2sin(2x+φ)圖象的對稱軸為x=-$\frac{π}{6}$,
所以2×(-$\frac{π}{6}$)+φ=$\frac{π}{2}$+kπ,k∈Z;
解得φ=$\frac{5π}{6}$+kπ,k∈Z;
又|φ|<$\frac{π}{2}$,
所以φ=-$\frac{π}{6}$.
故選:B.

點評 本題主要考查了正弦函數(shù)的圖象與性質的應用問題,屬于基礎題目.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{a{x^2}+2,x≥0}\\{(a-2)•{2^x},x<0}\end{array}}$是R上的單調函數(shù),則實數(shù)a的取值范圍是( 。
A.(2,+∞)B.(2,4]C.(-∞,4]D.(2,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,sinA,sinB,sinC依次成等比數(shù)列,c=2a且$\overrightarrow{BA}$•$\overrightarrow{BC}$=24,則△ABC的面積是4$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知銳角θ滿足sin($\frac{θ}{2}$+$\frac{π}{6}$)=$\frac{2}{3}$,則cos(θ+$\frac{5π}{6}$)的值為( 。
A.-$\frac{1}{9}$B.$\frac{4\sqrt{5}}{9}$C.-$\frac{4\sqrt{5}}{9}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,四邊形ABCD是平行四邊形,AE⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=$\sqrt{6}$,DE=3,∠BAD=60°,G為BC的中點.
(1)求證:FG∥平面BED;
(2)求證:平面BED⊥平面AED;
(3)求多面體EF-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設函數(shù)f(x)=2cos2x-3acosx-3在x∈R上有零點,則實數(shù)a的取值范圍是( 。
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-$\frac{1}{3}$,$\frac{1}{3}$]D.(-∞,-$\frac{1}{3}$]∪[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=3+\sqrt{10}cosα}\\{y=1+\sqrt{10}sinα}\end{array}\right.$(α為參數(shù)),以直角坐標系原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程.
(2)若直線l的極坐標方程為ρsinθ-ρcosθ=2,求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知向量$\overrightarrow{BA}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{BC}$=($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),則∠ABC=( 。
A.1200B.600C.450D.300

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知f(x)=|x-1|-|2x+3|.
(1)解不等式f(x)>2;
(2)關于x的不等式f(x)≤$\frac{3}{2}$a2-a的解集為R,求a的取值范圍.

查看答案和解析>>

同步練習冊答案