2.求和:
(1)$\sum_{k=1}^{10}$(3+2k);
(2)(2+$\frac{1}{3}$)+(4+$\frac{1}{9}$)+(6+$\frac{1}{27}$)+…+(2n+$\frac{1}{{3}^{n}}$);
(3)(a-1)+(a2-1)+(a3-1)+…+(an-1)

分析 分別根據(jù)等比數(shù)列和等差數(shù)列的前n項和公式計算即可.

解答 解:(1)$\sum_{k=1}^{10}$(3+2k)=3+21+3+22+…+3+210=3×10+$\frac{2(1-{2}^{10})}{1-2}$=30+(211-2)=2076,
(2)(2+$\frac{1}{3}$)+(4+$\frac{1}{9}$)+(6+$\frac{1}{27}$)+…+(2n+$\frac{1}{{3}^{n}}$)=(2+4+6+…+2n)+($\frac{1}{3}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{3}^{3}}$+…+$\frac{1}{{3}^{n}}$)=$\frac{n(2+2n)}{2}$+$\frac{\frac{1}{3}(1-{3}^{-n})}{1-\frac{1}{3}}$n2+n+$\frac{1}{2}$-$\frac{1}{2•{3}^{n}}$,
(3(a-1)+(a2-1)+(a3-1)+…+(an-1)=(a+a2+a3+…+an)-n,
當a=1時,(a-1)+(a2-1)+(a3-1)+…+(an-1)=0,
當a≠1時,(a-1)+(a2-2)+(a3-3)+…+(an-n)=$\frac{a(1-{a}^{n})}{1-a}$-n

點評 本題考查了等差數(shù)列和等比數(shù)列當前n項和公式,培養(yǎng)了學生的運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

12.若$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為$\frac{π}{3}$的兩個單位向量,則$\overrightarrow{a}$=2$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$;$\overrightarrow$=-3$\overrightarrow{{e}_{1}}$+2$\overrightarrow{{e}_{2}}$的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,在A,B,C,D,E五個區(qū)域中栽種3種植物,要求同一區(qū)域中只種1種植物,相鄰兩區(qū)域所種植物不同,則不同的栽種方法的總數(shù)為( 。
A.21B.24C.30D.48

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知曲線$y=\frac{1}{3}{x^3}+\frac{4}{3}$.
(1)求曲線過點P(2,4)的切線方程;
(2)求滿足斜率為1的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.cos(-1920°)的值為(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)=2sin2(ωx+$\frac{π}{6}$)(ω>0)在區(qū)間[$\frac{π}{6}$,$\frac{2π}{3}$]內(nèi)單調(diào)遞增,則ω的最大值是( 。
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.畫出不等式x2-y2-4x-2y+3≥0表示的平面區(qū)域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.給定下列四個命題:
(1)若a2>b2,c2>d2,則|ac|>|bd|;
(2)Sn是等比數(shù)列{an}的前n項和,則必有:Sn(S3n-S2n)=(S2n-Sn2
(3)函數(shù)f(x)=lgsin(2x-$\frac{π}{3}$)的圖象有對稱軸;
(4)O是△ABC所在平面上一定點,動點P滿足:$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{sinC}$$+\frac{\overrightarrow{AC}}{sinB}$),λ∈(0,+∞),則直線AP一定通過△ABC的內(nèi)心;
其中正確命題的序號為(1)(2)(3)(4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知若z1、z2是非零復數(shù),且|z1+z2|=|z1-z2|.求證:$\frac{{z}_{1}}{{z}_{2}}$是純虛數(shù).

查看答案和解析>>

同步練習冊答案