A. | $\frac{3}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
分析 由條件利用二倍角公式化簡函數的解析式,再利用余弦函數的單調性求得ω的最大值.
解答 解:∵函數f(x)=2sin2(ωx+$\frac{π}{6}$)=2•$\frac{1-cos(2ωx+\frac{π}{3})}{2}$=1-cos(2ωx+$\frac{π}{3}$)(ω>0)
在區(qū)間[$\frac{π}{6}$,$\frac{2π}{3}$]內單調遞增,
故y=cos(2ωx+$\frac{π}{3}$)在區(qū)間[$\frac{π}{6}$,$\frac{2π}{3}$]內單調遞減,
∴2ω•$\frac{2π}{3}$+$\frac{π}{3}$≤π,∴ω≤$\frac{1}{2}$,
故選:C.
點評 本題主要考查二倍角公式的應用,余弦函數的單調性,屬于基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=x2+2x | B. | f(x)=cosx | C. | f(x)=2x-1 | D. | f(x)=$\frac{1}{2}$(ex-e-x) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4 | B. | 1或4 | C. | 2 | D. | 1或2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com