【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知直線l上兩點(diǎn)MN的極坐標(biāo)分別為(2,0),(),圓C的參數(shù)方程θ為參數(shù)).

(Ⅰ)設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;

(Ⅱ)判斷直線l與圓C的位置關(guān)系.

【答案】見(jiàn)解析

【解析】

(Ⅰ)設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;(Ⅱ)求出圓的圓心與半徑,判斷圓心與直線的距離與半徑的關(guān)系,即可判斷直線l與圓C的位置關(guān)系.

解:(Ⅰ)M,N的極坐標(biāo)分別為(2,0),(),

所以MN的直角坐標(biāo)分別為:M2,0),N0,),P為線段MN的中點(diǎn)(1,),

直線OP的平面直角坐標(biāo)方程y

(Ⅱ)圓C的參數(shù)方程θ為參數(shù)).它的直角坐標(biāo)方程為:(x22+y24,

圓的圓心坐標(biāo)為(2,),半徑為2,

直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),(),

方程為yx2x2),即x+3y20

圓心到直線的距離為:2,

所以,直線l與圓C相交.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.為曲線上的動(dòng)點(diǎn),點(diǎn)在射線上,且滿足.

(Ⅰ)求點(diǎn)的軌跡的直角坐標(biāo)方程;

(Ⅱ)設(shè)軸交于點(diǎn),過(guò)點(diǎn)且傾斜角為的直線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD-A1B1C1D1中,點(diǎn)MN分別在AB1、BC1上,且AM=AB1,BN=BC1,則下列結(jié)論:①AA1⊥MN;②A1C1// MN;③MN//平面A1B1C1D1;④B1D1⊥MN,其中,

正確命題的個(gè)數(shù)是( )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于兩點(diǎn),且,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是拋物線的焦點(diǎn),是拋物線上一點(diǎn),且.

1)求拋物線的標(biāo)準(zhǔn)方程;

2)過(guò)點(diǎn)的動(dòng)直線交拋物線于兩點(diǎn),拋物線上是否存在一個(gè)定點(diǎn),使得以弦為直徑的圓恒過(guò)點(diǎn)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)將甲、乙兩個(gè)學(xué)生在高二的6次數(shù)學(xué)測(cè)試的成績(jī)(百分制)制成如圖所示的莖葉圖,進(jìn)入高三后,由于改進(jìn)了學(xué)習(xí)方法,甲、乙這兩個(gè)學(xué)生的考試成績(jī)預(yù)計(jì)同時(shí)有了大的提升:若甲(乙)的高二任意一次考試成績(jī)?yōu)?/span>,則甲(乙)的高三對(duì)應(yīng)的考試成績(jī)預(yù)計(jì)為.

(1)試預(yù)測(cè):高三6次測(cè)試后,甲、乙兩個(gè)學(xué)生的平均成績(jī)分別為多少?誰(shuí)的成績(jī)更穩(wěn)定?

(2)若已知甲、乙兩個(gè)學(xué)生的高二6次考試成績(jī)分別由低到高進(jìn)步的,定義為高三的任意一次考試后甲、乙兩個(gè)學(xué)生的當(dāng)次成績(jī)之差的絕對(duì)值,求的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知{an}為等差數(shù)列,前n項(xiàng)和為Sn(nN*),{bn}是首項(xiàng)為2的等比數(shù)列,且公比大于0,b2b312,b3a42a1,S1111b4.

(1){an}{bn}的通項(xiàng)公式;

(2)求數(shù)列{a2nbn}的前n項(xiàng)和(nN*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:我羊食半馬.馬主曰:我馬食半牛.今欲衰償之,問(wèn)各出幾何?此問(wèn)題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說(shuō):我羊所吃的禾苗只有馬的一半.馬主人說(shuō):我馬所吃的禾苗只有牛的一半.打算按此比例償還,他門(mén)各應(yīng)償還多少?該問(wèn)題中,1斗為10升,則羊主人應(yīng)償還多少升粟?(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列的公差不為0,其前項(xiàng)和為,,且,,成等比數(shù)列.

1)求數(shù)列的通項(xiàng)公式及的最小值;

2)若數(shù)列是等差數(shù)列,且,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案