【題目】已知函數(shù),
(1)討論在上的單調(diào)性.
(2)當時,若在上的最大值為,討論:函數(shù)在內(nèi)的零點個數(shù).
【答案】(1)當時,在上單調(diào)遞增;當時,在上單調(diào)遞減;(2)個零點
【解析】
(1)求得,根據(jù)范圍可知,進而通過對的正負的討論得到函數(shù)單調(diào)性;
(2)由(1)可得函數(shù)在上的單調(diào)性,進而利用最大值構造方程求得,得到函數(shù)解析式;利用單調(diào)性和零點存在定理可確定在上有個零點;令,求導后,可確定在上存在零點,從而得到的單調(diào)性,通過單調(diào)性和零點存在定理可確定零點個數(shù).
(1)
當時,
當,時,;當,時,
當時,在上單調(diào)遞增;當時,在上單調(diào)遞減
(2)由(1)知,當時,在上單調(diào)遞增
,解得:
在上單調(diào)遞增,,
在內(nèi)有且僅有個零點
令,
當時,,,
在內(nèi)單調(diào)遞減
又,
,使得
當時,,即;當時,,即
在上單調(diào)遞增,在上單調(diào)遞減
在上無零點且
又
在上有且僅有個零點
綜上所述:在上共有個零點
科目:高中數(shù)學 來源: 題型:
【題目】年初新冠病毒疫情爆發(fā),全國范圍開展了“停課不停學”的線上教學活動.哈六中數(shù)學組積極研討網(wǎng)上教學策略:先采取甲、乙兩套方案教學,并對分別采取兩套方案教學的班級的次線上測試成績進行統(tǒng)計如圖所示:
(1)請?zhí)顚懴卤恚ㄒ髮懗鲇嬎氵^程)
平均數(shù) | 方差 | |
甲 | ||
乙 |
(2)從下列三個不同的角度對這次方案選擇的結果進行
①從平均數(shù)和方差相結合看(分析哪種方案的成績更好);
②從折線圖上兩種方案的走勢看(分析哪種方案更有潛力).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程為,直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)求曲線的參數(shù)方程與直線的普通方程;
(Ⅱ)設點為曲線上的動點,點和點為直線上的點,且.求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】產(chǎn)量相同的機床一和機床二生產(chǎn)同一種零件,在一個小時內(nèi)生產(chǎn)出的次品數(shù)分別記為,,它們的分布列分別如下:
0 | 1 | 2 | 3 | |
0.4 | 0.3 | 0.2 | 0.1 |
0 | 1 | 2 | |
0.2 | 0.6 | 0.2 |
(1)哪臺機床更好?請說明理由;
(2)記表示臺機床小時內(nèi)共生產(chǎn)出的次品件數(shù),求的分布列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】是邊長為的等邊三角形,E、F分別為AB、AC的中點,,沿EF把折起,使點A翻折到點P的位置,連接PB、PC,則四棱錐的外接球的表面積的最小值為________,此時四棱錐的體積為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,GH是東西方向的公路北側的邊緣線,某公司準備在GH上的一點B的正北方向的A處建設一倉庫,設,并在公路北側建造邊長為的正方形無頂中轉站CDEF(其中EF在GH上),現(xiàn)從倉庫A向GH和中轉站分別修兩條道路AB,AC,已知AB=AC+1,且.
(1)求關于的函數(shù)解析式,并求出定義域;
(2)如果中轉站四堵圍墻造價為10萬元/km,兩條道路造價為30萬元/km,問:取何值時,該公司建設中轉站圍墻和兩條道路總造價M最低.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com