【題目】某產(chǎn)品的廣告費用x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:
廣告費用x(萬元) | 4 | 2 | 3 | 5 |
銷售額y(萬元) | 49 | 26 | 39 | 54 |
(1)求根據(jù)上表可得線性回歸方程=x+;
(2) 模型預報廣告費用為6萬元時銷售額為多少
【答案】(1)=9.4x+9.1 ,(2)65.5萬元
【解析】
(1)根據(jù)表中數(shù)據(jù)計算、,求出回歸直線方程的系數(shù)即可;
(2)由回歸直線方程計算x=6時對應y的值即可.
(1)根據(jù)表中數(shù)據(jù),計算=×(4+2+3+5)=3.5,
=×(49+26+39+54)=42;
(xi﹣)(yi﹣)=(4﹣3.5)(49﹣42)+(2﹣3.5)(26﹣42)+(3﹣3.5)(39﹣42)+(5﹣3.5)(54﹣42)=47;
=(4﹣3.5)2+(2﹣3.5)2+(3﹣3.5)2+(5﹣3.5)2=5;
∴,
;
所以y關(guān)于x的線性回歸方程為
=9.4x+9.1;
(2)當x=6時,y=9.4×6+9.1=65.5萬元;
由此預測廣告費用為7萬元時銷售額為65.5萬元
科目:高中數(shù)學 來源: 題型:
【題目】在一個不透明的箱子里放有四個質(zhì)地相同的小球,四個小球標的號碼分別為1,1,2,3.現(xiàn)甲、乙兩位同學依次從箱子里隨機摸取一個球出來,記下號碼并放回.
(Ⅰ)求甲、乙兩位同學所摸的球號碼相同的概率;
(Ⅱ)求甲所摸的球號碼大于乙所摸的球號碼的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的圖象上相鄰兩個最高點的距離為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若△ABC三個內(nèi)角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若圖所示,將若干個點擺成三角形圖案,每條邊(包括兩個端點)n(n>1,n∈N*)個點,相應的圖案中總的點數(shù)記為an , 則 + + +…+ = .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+ ax2﹣2bx
(1)設點a=﹣3,b=1,求f(x)的最大值;
(2)當a=0,b=﹣ 時,方程2mf(x)=x2有唯一實數(shù)解,求正數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一顆骰子先后拋擲2次,觀察向上的點數(shù),求:
(1)兩數(shù)之和為5的概率;
(2)兩數(shù)中至少有一個奇數(shù)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果關(guān)于x的方程 正實數(shù)解有且僅有一個,那么實數(shù)a的取值范圍為( )
A.{a|a≤0}
B.{a|a≤0或a=2}
C.{a|a≥0}
D.{a|a≥0或a=﹣2}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】f(x)的定義域為(0,+∞),且對一切x>0,y>0都有f=f(x)-f(y),當x>1時,有f(x)>0。
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性并證明;
(3)若f(6)=1,解不等式f(x+3)-f<2;
(4)若f(4)=2,求f(x)在[1,16]上的值域。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…為自然對數(shù)的底數(shù).
(1)討論f(x)的單調(diào)性;
(2)證明:當x>1時,g(x)>0;
(3)確定a的所有可能取值,使得f(x)>g(x)在區(qū)間(1,+∞)內(nèi)恒成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com