18.設(shè)集合A={x||4x-1|<9,x∈R},B={x|$\frac{x}{x+3}$≥0,x∈R},則∁RA∩B=( 。
A.(-3-2]B.(-3-2]∪[0,$\frac{5}{2}$)C.(-∞,-3]∪[$\frac{5}{2}$,+∞)D.(-∞,-3)∪[$\frac{5}{2}$,+∞)

分析 求出集合的等價(jià)條件,根據(jù)集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:A={x||4x-1|<9,x∈R}={x|-2<x<$\frac{5}{2}$},
B={x|$\frac{x}{x+3}$≥0,x∈R}={x|x≥0或x<-3},
RA={x|x≥$\frac{5}{2}$或x≤-2},
則∁RA∩B=}={x|x≥$\frac{5}{2}$或x<-3},
故選:D

點(diǎn)評 本題主要考查集合的基本運(yùn)算,根據(jù)條件求出集合的等價(jià)條件,結(jié)合集合的基本運(yùn)算是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在等差數(shù)列{an}中,a1=-2011,其前n項(xiàng)的和為Sn.若$\frac{{S}_{2010}}{2010}$-$\frac{{S}_{2008}}{2008}$=2,則S2011=( 。
A.-2010B.2010C.2011D.-2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.甲、乙兩個(gè)學(xué)校高三年級分別有1100人、1000人,為了解兩個(gè)學(xué)校高三年級全體學(xué)生在該地區(qū)三?荚嚨臄(shù)學(xué)成績情況,采用分層抽樣的方法從兩個(gè)學(xué)校一共抽取了105名學(xué)生的數(shù)學(xué)成績,并作出了如下的頻數(shù)分布表,規(guī)定考試成績在[120,150]內(nèi)為優(yōu)秀.
甲校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
頻數(shù)23101515x31
乙校:
分組[70,80)[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]
頻數(shù)12981010y3
(1)計(jì)算x,y的值;
(2)若將頻率視為概率,從乙校高三學(xué)年任取三名學(xué)生的三模數(shù)學(xué)成績,其中優(yōu)秀的人數(shù)為X,求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知log2(x+y)=log2x+log2y,則$\frac{4x}{x-1}$+$\frac{9y}{y-1}$的最小值是25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)是R上的奇函數(shù),f(x+2)=-f(x),當(dāng)x∈(0,2)時(shí),f(x)=x+2,則f(7)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列函數(shù)f(x)中,滿足“對任意的x1,x2∈(0,+∞)時(shí),均(x1-x2)[f(x1)-f(x2)]>0”的是( 。
A.f(x)=($\frac{1}{2}$)xB.f(x)=x2-4x+4C.f(x)=|x+2|D.f(x)=log${\;}_{\frac{1}{2}}}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.直線x-$\sqrt{3}$y+3=0的傾斜角為$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.三個(gè)數(shù)${0.3^π},{π^{0.3}},sin\frac{20π}{3}$的大小順序是( 。
A.$sin\frac{20π}{3}<{0.3^π}<{π^{0.3}}$B.$sin\frac{20π}{3}<{π^{0.3}}<{0.3^π}$
C.${0.3^π}<sin\frac{20π}{3}<{π^{0.3}}$D.${0.3^π}<{π^{0.3}}<sin\frac{20π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.$\frac{2sin20°+sin40°}{sin50°}$$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案