19.已知函數(shù)f(x)=x(lnx-2ax)有兩個極值點,則實數(shù)a的取值范圍是( 。
A.(-∞,$\frac{1}{4}$)B.(0,$\frac{1}{2}$)C.(0,$\frac{1}{4}$)D.($\frac{1}{2}$,+∞)

分析 f(x)=xlnx-2ax2(x>0),f′(x)=lnx+1-4ax.令g(x)=lnx+1-4ax,由于函數(shù)f(x)=x(lnx-2ax)有兩個極值點?g(x)=0在區(qū)間(0,+∞)上有兩個實數(shù)根.g′(x)=$\frac{1}{x}$-4a.當a≤0時,直接驗證;當a>0時,利用導數(shù)研究函數(shù)g(x)的單調(diào)性可得:當x=$\frac{1}{4a}$時,函數(shù)g(x)取得極大值,故要使g(x)有兩個不同解,只需要g($\frac{1}{4a}$)=ln$\frac{1}{4a}$>0,解得即可.

解答 解:f(x)=xlnx-2ax2(x>0),f′(x)=lnx+1-4ax.
令g(x)=lnx+1-4ax,
∵函數(shù)f(x)=x(lnx-ax)有兩個極值點,
則g(x)=0在區(qū)間(0,+∞)上有兩個實數(shù)根.
g′(x)=$\frac{1}{x}$-4a=$\frac{1-4ax}{x}$,
當a≤0時,g′(x)>0,則函數(shù)g(x)在區(qū)間(0,+∞)單調(diào)遞增,
因此g(x)=0在區(qū)間(0,+∞)上不可能有兩個實數(shù)根,應舍去.
當a>0時,令g′(x)=0,解得x=$\frac{1}{4a}$.
令g′(x)>0,解得0<x<$\frac{1}{4a}$,此時函數(shù)g(x)單調(diào)遞增;
令g′(x)<0,解得x>$\frac{1}{4a}$,此時函數(shù)g(x)單調(diào)遞減.
∴當x=$\frac{1}{4a}$時,函數(shù)g(x)取得極大值.
當x趨近于0與x趨近于+∞時,g(x)→-∞,
要使g(x)=0在區(qū)間(0,+∞)上有兩個實數(shù)根,
只需g($\frac{1}{4a}$)=ln$\frac{1}{4a}$>0,解得0<a<$\frac{1}{4}$.
∴實數(shù)a的取值范圍是(0,$\frac{1}{4}$).
故選:C.

點評 本題考查了利用導數(shù)研究函數(shù)的單調(diào)性極值,考查了等價轉(zhuǎn)化方法,考查了推理能力和計算能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.一個圓錐與一個球的體積相等,圓錐的底面半徑是球半徑的$\frac{3}{2}$倍,則圓錐的高與球半徑之比為( 。
A.16:9B.9:16C.27:8D.8:27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且a1=1,an=$\frac{2S_n^2}{{2{S_n}-1}}({n≥2})$.
(Ⅰ)求證:$\left\{{\frac{1}{S_n}}\right\}$是等差數(shù)列,并求Sn的表達式;
(Ⅱ)若存在正數(shù)k,使得對任意n∈N*,都有(1+S1)(1+S2)…(1+Sn)≥k$\sqrt{2n+1}$,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=|x+a|+|x-2|(a∈R).
(1)若f(x)的最小值為1,求實數(shù)a的值;
(2)若a=-3,求不等式f(x)≥3的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知${({\frac{2}{3}})^y}={({\frac{3}{2}})^{{x^2}+1}}$,則y的最大值是( 。
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,A,B,C,D為平面四邊形ABCD的四個內(nèi)角.
(1)證明:tan$\frac{A}{2}$=$\frac{1-cosA}{sinA}$;
(2)已知AB=6,BC=3,CD=4,AD=5,
①若A+C=180°,求tan$\frac{A}{2}$+tan$\frac{B}{2}$+tan$\frac{C}{2}$+tan$\frac{D}{2}$的值;
②求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列判斷錯誤的是( 。
A.若隨機變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ≤-2)=0.21
B.若n組數(shù)據(jù)(x1,y1)…(xn,yn)的散點都在y=-2x+1上,則相關系數(shù)r=-1
C.“x0為函數(shù)f(x)的極值點”是“f′(x0)=0”的充分不必要條件
D.若隨機變量ξ服從二項分布:ξ~B(5,$\frac{1}{5}$),則Eξ=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知f(x)=x2-2|x|(x∈R).
(1)若方程f(x)=kx有三個解,試求實數(shù)k的取值范圍;
(2)是否存在實數(shù)m,n(m<n),使函數(shù)f(x)的定義域與值域均為[m,n]?若存在,求出所有的區(qū)間[m,n],若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知三個對數(shù)函數(shù):y=logax,y=logbx,y=logcx,它們分別對應如圖中標號為①②③三個圖象  則a、b、c的大小關系是(  )
A.a<b<cB.b<a<cC.c<a<bD.c<b<a

查看答案和解析>>

同步練習冊答案