14.已知${({\frac{2}{3}})^y}={({\frac{3}{2}})^{{x^2}+1}}$,則y的最大值是( 。
A.-2B.-1C.0D.1

分析 利用指數(shù)函數(shù)與二次函數(shù)的單調(diào)性即可得出.

解答 解:∵${({\frac{2}{3}})^y}={({\frac{3}{2}})^{{x^2}+1}}$,∴$(\frac{2}{3})^{y}$=$(\frac{2}{3})^{-({x}^{2}+1)}$,
∴y=-x2-1≤-1,
∴y的最大值為-1.
故選:B.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知?jiǎng)訄AP過(guò)點(diǎn)A(-2,0)且與圓B:(x-2)2+y2=36內(nèi)切.
(1)求動(dòng)圓圓心P的軌跡E的方程;
(2)若軌跡E上有一動(dòng)點(diǎn)Q,滿(mǎn)足∠AQB=60°,求|QA|•|QB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.求下列各式的值:
(1)$ln\sqrt{e}$;            
(2)log26-log23;
(3)${log_3}(27×{9^2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.運(yùn)行如圖所示的程序框圖,若輸出的S的值為-5050,則空白處應(yīng)填的數(shù)是( 。
A.99B.100C.101D.98

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)是以3為周期的偶函數(shù),且f(5)=2,則f(4)的值為( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知函數(shù)f(x)=x(lnx-2ax)有兩個(gè)極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,$\frac{1}{4}$)B.(0,$\frac{1}{2}$)C.(0,$\frac{1}{4}$)D.($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.三個(gè)女生和五個(gè)男生排成一排.
(1)如果女生必須全排在一起,可有多少種不同的排法?
(2)如果女生必須全分開(kāi),可有多少種不同的排法?
(3)如果兩端都不能排女生,可有多少種不同的排法?
(4)如果兩端不能都排女生,可有多少種不同的排法?
(5)甲必須在乙的右邊,可有多少種不同的排法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知正項(xiàng)等比數(shù)列{an},$2{a_1}+{a_2}=15,{a_4}^2=9{a_1}{a_5}$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an;數(shù)列$\left\{{\frac{1}{b_n}}\right\}$的前n項(xiàng)和記為Sn,是否存在正整數(shù)n,使得${S_n}>\frac{39}{20}$,若存在,求出n的最小值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在△ABC中,已知$a=9,c=2\sqrt{3},B={150°}$,則邊長(zhǎng)b等于7$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案