【題目】如圖, 是圓柱的母線, 是的直徑, 是底面圓周上異于的任意一點, , .
(1)求證:
(2)當三棱錐的體積最大時,求與平面所成角的大;
(3)上是否存在一點,使二面角的平面角為45°?若存在,求出此時的長;若不存在,請說明理由.
【答案】(1)證明見解析;(2)45°;(3)存在這樣的點且,證明見解析.
【解析】試題分析:(1)平面平面, ,所以平面, ;(2)時,三棱錐體積的最大, 與平面所成角度為45°;(3)存在這樣的點且。
試題解析:
(1)∵平面, 平面
∴,又,
∴平面
又∵平面,
∴平面平面,
而平面平面,
∴平面,而平面,
∴
(2)設(shè),在中,
∵平面,
∴是三棱錐的高
因此三棱錐的體積為
∵, ,
∴當,即時,三棱錐體積的最大值為
此時為等腰直角三角形,
∴與平面所成角度為45°
(3)存在這樣的點且,理由如下:
記的中點為,連接,
∵為等腰直角三角形
∴,由(1)知,
∴平面,
又平面,∴
∴是二面角的平面角,即
為等腰直角三角形, ,
∴
在中,
在和中,可解得,
科目:高中數(shù)學 來源: 題型:
【題目】已知線段的端點,端點在圓上運動
(Ⅰ)求線段的中點的軌跡方程.
(Ⅱ) 設(shè)動直線與圓交于兩點,問在軸正半軸上是否存在定點,使得直線與直線關(guān)于軸對稱?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù)y=3sin(2x + )
(1)求最小正周期、對稱軸和對稱中心;
(2)簡述此函數(shù)圖象是怎樣由函數(shù)y=sinx的圖象作變換得到的.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,且滿足.
(1)判斷函數(shù)在上的單調(diào)性,并用定義證明;
(2)設(shè)函數(shù),求在區(qū)間上的最大值;
(3)若存在實數(shù)m,使得關(guān)于x的方程恰有4個不同的正根,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知線段AB的兩個端點A、B分別在x軸和y軸上滑動,且∣AB∣=2.
(1)求線段AB的中點P的軌跡C的方程;
(2)求過點M(1,2)且和軌跡C相切的直線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將名學生分成兩組參加城市綠化活動,其中組布置盆盆景, 組種植棵樹苗.根據(jù)歷年統(tǒng)計,每名學生每小時能夠布置盆盆景或者種植棵樹苗.設(shè)布置盆景的學生有人,布置完盆景所需要的時間為,其余學生種植樹苗所需要的時間為(單位:小時,可不為整數(shù)).
⑴寫出、的解析式;
⑵比較、的大小,并寫出這名學生完成總?cè)蝿?wù)的時間的解析式;
⑶應怎樣分配學生,才能使得完成總?cè)蝿?wù)的時間最少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法不正確的是( )
A. 方程有實根函數(shù)有零點
B. 有兩個不同的實根
C. 函數(shù)在上滿足,則在內(nèi)有零點
D. 單調(diào)函數(shù)若有零點,至多有一個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com