【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn (λ為常數(shù)).令cn=b2n(n∈N*)求數(shù)列{cn}的前n項(xiàng)和Rn

【答案】
(1)解:設(shè)等差數(shù)列{an}的首項(xiàng)為a1,公差為d,由a2n=2an+1,取n=1,得a2=2a1+1,即a1﹣d+1=0①

再由S4=4S2,得 ,即d=2a1

聯(lián)立①、②得a1=1,d=2.

所以an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1


(2)解:把a(bǔ)n=2n﹣1代入 ,得 ,則

所以b1=T1=λ﹣1,

當(dāng)n≥2時(shí), =

所以 ,

Rn=c1+c2+…+cn=

③﹣④得: =

所以

所以數(shù)列{cn}的前n項(xiàng)和


【解析】(1)設(shè)出等差數(shù)列的首項(xiàng)和公差,由已知條件列關(guān)于首項(xiàng)和公差的方程組,解出首項(xiàng)和公差后可得數(shù)列{an}的通項(xiàng)公式;(2)把{an}的通項(xiàng)公式代入 ,求出當(dāng)n≥2時(shí)的通項(xiàng)公式,然后由cn=b2n得數(shù)列{cn}的通項(xiàng)公式,最后利用錯(cuò)位相減法求其前n項(xiàng)和.
【考點(diǎn)精析】本題主要考查了等差數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,多面體中,為正方形,,二面角的余弦值為,且.

(1)證明:平面平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex , x∈R.
(1)若直線y=kx+1與f (x)的反函數(shù)g(x)=lnx的圖象相切,求實(shí)數(shù)k的值;
(2)設(shè)x>0,討論曲線y=f (x) 與曲線y=mx2(m>0)公共點(diǎn)的個(gè)數(shù).
(3)設(shè)a<b,比較 的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校為調(diào)查學(xué)生喜歡“應(yīng)用統(tǒng)計(jì)”課程是否與性別有關(guān),隨機(jī)抽取了選修課程的60名學(xué)生,得到數(shù)據(jù)如下表:

喜歡統(tǒng)計(jì)課程

不喜歡統(tǒng)計(jì)課程

合計(jì)

男生

20

10

30

女生

10

20

30

合計(jì)

30

30

60

(1)判斷是否有99.5%的把握認(rèn)為喜歡“應(yīng)用統(tǒng)計(jì)”課程與性別有關(guān)?

(2)用分層抽樣的方法從喜歡統(tǒng)計(jì)課程的學(xué)生中抽取6名學(xué)生作進(jìn)一步調(diào)查,將這6名學(xué)生作為一個(gè)樣本,從中任選3人,求恰有2個(gè)男生和1個(gè)女生的概率.

下面的臨界值表供參考:

0.05

0.025

0.010

0.005

0.001

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線過(guò)點(diǎn),其參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知曲線和曲線交于兩點(diǎn)(、之間),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線

1)若直線不經(jīng)過(guò)第四象限,求的取值范圍;

2)若直線軸負(fù)半軸于點(diǎn),交軸正半軸于點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的面積為,求的最小值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于公差d>0的等差數(shù)列{an}的四個(gè)命題:
p1:數(shù)列{an}是遞增數(shù)列;
p2:數(shù)列{nan}是遞增數(shù)列;
p3:數(shù)列 是遞增數(shù)列;
p4:數(shù)列{an+3nd}是遞增數(shù)列;
其中真命題是(
A.p1 , p2
B.p3 , p4
C.p2 , p3
D.p1 , p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左焦點(diǎn)為F,C與過(guò)原點(diǎn)的直線相交于A,B兩點(diǎn),連接AF、BF,若|AB|=10,|AF|=6,cos∠ABF= ,則C的離心率e=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017514.第一屆一帶一路國(guó)際高峰論壇在北京舉行,為了解不同年齡的人對(duì)一帶一路關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)青少年中老年的人數(shù)之比為9:11

(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有99%的把握認(rèn)為關(guān)注一帶一路是和年齡段有關(guān)?

(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進(jìn)行問(wèn)卷調(diào)查,在這9人中再取3人進(jìn)打面對(duì)面詢問(wèn),記選取的3人中一帶一路的人數(shù)為X,求x的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案