1.設(shè)f(x)是R上的連續(xù)可導(dǎo)函數(shù),當(dāng)x≠0時(shí),$f'(x)+\frac{f(x)}{x}>0$,則函數(shù)$g(x)=\frac{1}{x}+f(x)$的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

分析 由題意可得,x≠0,因而 g(x)的零點(diǎn)跟 xg(x)的非零零點(diǎn)是完全一樣的.當(dāng)x>0時(shí),利用導(dǎo)數(shù)的知識可得xg(x)在(0,+∞)上是遞增函數(shù),xg(x)>1恒成立,可得xg(x)在(0,+∞)上無零點(diǎn).同理可得xg(x)在(-∞,0)上也無零點(diǎn),從而得出結(jié)論.

解答 解:由于函數(shù)g(x)=f(x)+$\frac{1}{x}$,可得x≠0,
因而 g(x)的零點(diǎn)跟 xg(x)的非零零點(diǎn)是完全一樣的,
故我們考慮 xg(x)=xf(x)+1 的零點(diǎn).
由于當(dāng)x≠0時(shí),$f'(x)+\frac{f(x)}{x}>0$,
①當(dāng)x>0時(shí),(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( $f'(x)+\frac{f(x)}{x}>0$)>0,
 所以,在(0,+∞)上,函數(shù)x•g(x)單調(diào)遞增函數(shù).
又∵$\underset{lim}{x→0}$[xf(x)+1]=1,
∴在(0,+∞)上,
函數(shù) x•g(x)=xf(x)+1>1恒成立,
因此,在(0,+∞)上,函數(shù) x•g(x)=xf(x)+1 沒有零點(diǎn).
②當(dāng)x<0時(shí),由于(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x( $f'(x)+\frac{f(x)}{x}>0$)<0,
故函數(shù) x•g(x)在(-∞,0)上是遞減函數(shù),函數(shù) x•g(x)=xf(x)+1>1恒成立,
故函數(shù) x•g(x)在(-∞,0)上無零點(diǎn).
綜上可得,函數(shù)g(x)=f(x)+$\frac{1}{x}$在R上的零點(diǎn)個(gè)數(shù)為0,
故選:A.

點(diǎn)評 本題考察了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,函數(shù)的零點(diǎn),屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}{x=3cosα}\\{y=3+3sinα}\end{array}$,(α為參數(shù)),M是C1上的動(dòng)點(diǎn),P點(diǎn)滿足$\overrightarrow{OP}$=2$\overrightarrow{OM}$,P點(diǎn)的軌跡為曲線C2
(1)求C2的參數(shù)方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線θ=$\frac{π}{3}$與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點(diǎn),過B點(diǎn)作BD⊥AC于D,BD交⊙O于E點(diǎn),若AE平分∠BAD,則∠BAD=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=2$\sqrt{3}$,O為AC與BD的交點(diǎn),E為棱PB的中點(diǎn).
(Ⅰ)證明:△EAC是等腰直角三角形;
(Ⅱ)求二面角A-CD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函f(x)=x2-x+1+alnx.
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2,且x1<x2,求證f(x2)<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,側(cè)面PAB⊥底面ABCD.若PA=AD=AB=kBC(0<k<1),則( 。
A.當(dāng)k=$\frac{1}{2}$時(shí),平面BPC⊥平面PCD
B.當(dāng)k=$\frac{1}{2}$時(shí),平面APD⊥平面PCD
C.對?k∈(0,1),直線PA與底面ABCD都不垂直
D.?k∈(0,1),使直線PD與直線AC垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知多面體ABCDEF如圖所示,其中ABCD為矩形,△DAE為等腰直角三角形,DA⊥AE,四邊形AEFB為梯形,且AE∥BF,∠ABF=90°,AB=BF=2AE=2.
(1)若G為線段DF的中點(diǎn),求證;EG∥平面ABCD;
(2)線段DF上是否存在一點(diǎn)N,使得直線BN與平面FCD所成角的正弦值等于$\frac{2}{5}$?若存在,請指出點(diǎn)N的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義:分子為1且分母為正整數(shù)的分?jǐn)?shù)稱為單位分?jǐn)?shù).我們可以把1分拆為若干個(gè)不同的單位分?jǐn)?shù)之和.如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,依此類推可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{n}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中m≤n,m,n∈N*,則m,n的值分別為( 。
A.m=13,n=20B.m=14,n=20C.m=20,n=20D.m=20,n=30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知a>0,不等式|ax-b|<2的解集為(1,2),則實(shí)數(shù)a,b的值為4,6.

查看答案和解析>>

同步練習(xí)冊答案