分析 (1)推導(dǎo)出DN⊥AC,PA⊥DN,從而DN⊥平面PAC,由此能證明平面PAC⊥平面MND.
(2)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角A-MN-D的正弦值.
解答 證明:(1)∵在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PA⊥底面ABCD,
M、N分別為PD、AC的中點,DN?平面ABCD,
∴DN⊥AC,PA⊥DN,
又AC∩PA=A,
∴DN⊥平面PAC,
∵DN?平面MND,
∴平面PAC⊥平面MND.
解:(2)以A為原點,AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,
設(shè)AB=2AP=1,則A(0,0,0),M(0,1,$\frac{1}{2}$),N(1,1,0),D(0,2,0),
$\overrightarrow{MA}$=(0,-1,-$\frac{1}{2}$),$\overrightarrow{MN}$=(1,0,-$\frac{1}{2}$),$\overrightarrow{MD}$=(0,1,-$\frac{1}{2}$),
設(shè)平面AMN的法向量$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{MA}=-y-\frac{1}{2}z=0}\\{\overrightarrow{m}•\overrightarrow{MN}=x-\frac{1}{2}z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{m}$=(1,-1,2),
設(shè)平面DMN的法向量$\overrightarrow{n}$=(a,b,c),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{MD}=b-\frac{1}{2}c=0}\\{\overrightarrow{n}•\overrightarrow{MN}=a-\frac{1}{2}c=0}\end{array}\right.$,
取a=1,得$\overrightarrow{n}$=(1,1,2),
設(shè)二面角A-MN-D的平面角為θ,
則|cosθ|=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4}{\sqrt{6}•\sqrt{6}}$=$\frac{2}{3}$,sin$θ=\sqrt{1-(\frac{2}{3})^{2}}$=$\frac{\sqrt{5}}{3}$.
∴二面角A-MN-D的正弦值為$\frac{\sqrt{5}}{3}$.
點評 本題考查面面垂直的證明,考查二面角的正弦值的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}x=2x'\\ y=3y'\end{array}\right.$ | B. | .$\left\{\begin{array}{l}x=\frac{1}{2}x'\\ y=\frac{1}{3}y'\end{array}\right.$ | C. | .$\left\{\begin{array}{l}x=4x'\\ y=9y'\end{array}\right.$ | D. | .$\left\{\begin{array}{l}x=\frac{1}{4}x'\\ y=\frac{1}{9}y'\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com