20.已知cosα=-$\frac{\sqrt{5}}{5}$,α∈(π,$\frac{3π}{2}$).
(1)求tanα的值;
(2)求$\frac{3sin(π+α)+cos(3π-α)}{sin(\frac{3π}{2}+α)+2sin(α-2π)}$的值.

分析 (1)利用同角三角函數(shù)基本關(guān)系式化簡求解即可.
(2)利用誘導(dǎo)公式化簡表達式,代入(1)的結(jié)果求解即可.

解答 解:(1)cosα=-$\frac{\sqrt{5}}{5}$,α∈(π,$\frac{3π}{2}$).sinα=-$\frac{2\sqrt{5}}{5}$,tanα=2.
(2)$\frac{3sin(π+α)+cos(3π-α)}{sin(\frac{3π}{2}+α)+2sin(α-2π)}$=$\frac{-3sinα-cosα}{-cosα+2sinα}$=$\frac{3tanα+1}{1-2tanα}$=$-\frac{7}{3}$.

點評 本題考查誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)當(dāng)x=θ時,函數(shù)f(x)=sinx-2cosx取得最大值,則tanθ=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.三條直線兩兩垂直,那么在下列四個結(jié)論中,正確的結(jié)論共有( 。
①這三條直線必共點;
②其中必有兩直線是異面直線;
③三條直線不可能共面;
④其中必有兩條在同一平面內(nèi).
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如城某觀光區(qū)的平面示意圖如圖所示,其中矩形ABCD的長AB=2千米,寬AD=1千米,半圓的圓心P為AB中點,為了便于游客觀光休閑,在觀光區(qū)鋪設(shè)一條由圓弧$\widehat{AE}$、線段EF、FC組成的觀光道路,其中線段EF經(jīng)過圓心P,且點F在線段CD上(不含線段端點C,D),已知道路AE,F(xiàn)C的造價為2a(a>0)元每千米,道路EF造價為7a元每千米,設(shè)∠APE=θ,觀光道路的總造價為y.
(1)試求y與θ的函數(shù)關(guān)系式:y=f(θ);
(2)當(dāng)θ為何值時,觀光道路的總造價y最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知拋物線C:y2=16x的焦點為F,準(zhǔn)線為l,P是l上一點,Q是直線PF與C的一個交點,若$\overrightarrow{PF}$=4$\overrightarrow{FQ}$,則|QF|=( 。
A.6B.8C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=2cos2x•($\sqrt{3}$cos2x-3sin2x)-$\sqrt{3}$的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(理科)求橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1上的點到直線l:x-2y-12=0的最大距離和最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知不等式|x+$\frac{1}{2}$|<$\frac{3}{2}$的解集為A,關(guān)于x的不等式($\frac{1}{π}$)2x>π-a-x(a∈R)的解集為B,全集U=R,求使∁UA∩B=B的實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.集合M={x|x2-2x≤0},N={x|x2≥1},則M∩N=(  )
A.[0,1]B.[1,2]C.[0,2]D.[-1,1]

查看答案和解析>>

同步練習(xí)冊答案