19.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{lg|x-2|}&{(x≠2)}\\ 1&{(x=2)}\end{array}}\right.$,若g(x)=[f(x)]2+bf(x)+c(其中b,c為常數(shù))恰有5個不同的零點x1,x2,x3,x4,x5,則f(x1+x2+x3+x4+x5)=(  )
A.3lg2B.2lg2C.0D.1

分析 若g(x)=[f(x)]2+bf(x)+c(其中b,c為常數(shù))恰有5個不同的零點x1,x2,x3,x4,x5,則x1,x2,x3,x4,x5中有三個數(shù)使f(x)=0,另兩個關(guān)于x=2對稱,則x1+x2+x3+x4+x5=10,代入可得答案.

解答 解:函數(shù)$f(x)=\left\{{\begin{array}{l}{lg|x-2|}&{(x≠2)}\\ 1&{(x=2)}\end{array}}\right.$的圖象如下圖所示:

若g(x)=[f(x)]2+bf(x)+c(其中b,c為常數(shù))恰有5個不同的零點,
則g(x)=t2+bt+c有兩個根,其中一個根為0,
即x1,x2,x3,x4,x5中有三個數(shù)使f(x)=0,
另兩個關(guān)于x=2對稱,
故x1+x2+x3+x4+x5=10,
故f(x1+x2+x3+x4+x5)=lg8=3ln2,
故選:A.

點評 本題考查的知識點是分段函數(shù)的應(yīng)用,函數(shù)的零點與方程的根,數(shù)形結(jié)合思想,難度中檔.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.在△ABC中,AB=3,AC=2,BC=4,則$\overrightarrow{BA}$•$\overrightarrow{AC}$等于( 。
A.-$\frac{3}{2}$B.-$\frac{2}{3}$C.$\frac{2}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列四種說法中,正確的個數(shù)有(  )
①命題“?x∈R,均有x2-3x-2≥0”的否定是:“?x0∈R,使得x${\;}_{0}^{2}$-3x0-2≤0”;
②“命題P∨Q為真”是“命題P∧Q為真”的必要不充分條件;
③?m∈R,使$f(x)=m{x^{{m^2}+2m}}$是冪函數(shù),且在(0,+∞)上是單調(diào)遞增;
④不過原點(0,0)的直線方程都可以表示成$\frac{x}{a}+\frac{y}=1$;
⑤在線性回歸分析中,相關(guān)系數(shù)r的值越大,變量間的相關(guān)性越強.
A.3個B.2個C.1個D.0個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知lg2=a,lg3=b,求下列各式的值:
(1)lg6;
(2)log212.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.等差數(shù)列{an}中,a2=1,公差d=2,則a3=( 。
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.將函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象經(jīng)怎樣平移后得到y(tǒng)=sin(2x+$\frac{π}{6}$)( 。
A.向左平移$\frac{π}{12}$B.向左平移$\frac{π}{6}$C.向右平移$\frac{π}{12}$D.向右平移$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.若log0.2x>1,則x的取值范圍是(0,0.2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知x,y∈R+,且xy=100,則x+y的最小值為20.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.無窮數(shù)列 P:a1,a2,…,an,…,滿足ai∈N*,且ai≤ai+1(i∈N*),對于數(shù)列P,記Tk(P)=min{n|an≥k}(k∈N*),其中min{n|an≥k}表示集合{n|an≥k}中最小的數(shù).
(1)若數(shù)列P:1?3?4?7?…,則T5(P)=4;
(2)已知a20=46,則s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=966.

查看答案和解析>>

同步練習冊答案