8.已知x,y∈R+,且xy=100,則x+y的最小值為20.

分析 根據(jù)基本不等式求解即可.

解答 解:因為x,y∈R+,且xy=100,
所以x+y≥2$\sqrt{xy}$=20,當(dāng)且僅當(dāng)x=y=10時取等號.

點評 本題主要考查基本不等式的應(yīng)用,屬于中等題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.記 a=tanθ,b=sinθ,c=cosθ,$θ∈\{θ\left|{-\frac{π}{4}<θ<\frac{3π}{4},θ≠0,\frac{π}{4},\frac{π}{2}}\right.$}中,若 a,b,c三數(shù)中最大的數(shù)是b,則θ的取值范圍是($\frac{π}{2}$,$\frac{3π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{lg|x-2|}&{(x≠2)}\\ 1&{(x=2)}\end{array}}\right.$,若g(x)=[f(x)]2+bf(x)+c(其中b,c為常數(shù))恰有5個不同的零點x1,x2,x3,x4,x5,則f(x1+x2+x3+x4+x5)=( 。
A.3lg2B.2lg2C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)函數(shù)y=f(x)的定義域為R,對于給定的正數(shù)K,定義函數(shù)${f_K}(x)=\left\{\begin{array}{l}f(x),f(x)≤K\\ K,f(x)>K\end{array}\right.$,取函數(shù)f(x)=-x2+2x,若對于任意的x∈(-∞,+∞),恒有fK(x)=f(x),則( 。
A.K的最大值為2B.K的最小值為2C.K的最大值為1D.K的最小值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.若不等式ax2+5x-2>0的解集是$\left\{{\left.x\right|\frac{2}{3}<x<1}\right\}$,
(1)求a的值;
(2)求不等式ax2-5x-1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$y=\sqrt{{{log}_{\frac{1}{3}}}(3x-4)}$的定義域為($\frac{4}{3}$,$\frac{5}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合M={x∈N*|x<9},S1,S2,…,Sk都是M的含有兩個元素的子集,且滿足:對任意的Si={ai,bi}(i∈{1,2,3,…,k}),總存在Sj={aj,bj}(j≠i,j∈{1,2,3,…,k})使得$max\left\{{\frac{a_j}{b_j},\frac{b_j}{a_j}}\right\}=max\left\{{\frac{a_i}{b_i},\frac{b_i}{a_i}}\right\}$,(max{x,y}表示兩個數(shù)x,y中的較大者),則k的最大值是( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知m∈R,函數(shù)f(x)=$\left\{\begin{array}{l}{|2x+1|,x<1}\\{lo{g}_{2}(x-1),x>1}\end{array}$,g(x)=x2-2x+2m-1,下列敘述中正確的有②
①函數(shù)y=f(f(x))有4個零點;
②若函數(shù)y=g(x)在(0,3)內(nèi)有零點,則-1<m≤1;
③函數(shù)y=f(x)+g(x)有兩個零點的充要條件是m≤-$\frac{1}{2}$或m≥-$\frac{1}{8}$;
④若函數(shù)y=f(g(x))-m有6個零點則實數(shù)m的取值范圍是(0,$\frac{3}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x<0}\\{\sqrt{x},x≥0}\end{array}\right.$,若關(guān)于x的方程f(x)=a(x+1)有三個不相等的實數(shù)根,則實數(shù)a的取值范圍是(0,$\frac{1}{2}$).

查看答案和解析>>

同步練習(xí)冊答案