精英家教網 > 高中數學 > 題目詳情
11.若log0.2x>1,則x的取值范圍是(0,0.2).

分析 把不等式兩邊化為同底數,利用對數函數的單調性求得x的取值范圍.

解答 解:由log0.2x>1,得log0.2x>log0.20.2,
即0<x<0.2,
∴x的取值范圍是(0,0.2).
故答案為:(0,0.2).

點評 本題考查對數不等式的解法,考查對數函數的單調性,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.已知sinα是方程5x2-7x-6=0的根,α是第三象限角,求$\frac{sin(-α-\frac{3π}{2})sin(\frac{3π}{2}-α)ta{n}^{3}α}{cos(\frac{π}{2}-α)cos(\frac{π}{2}+α)}$的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知函數f(x)=log2(ax2+(1-3a)x+2a-1),解答下列問題:
(Ⅰ)當a=-1時,寫出函數f(x)的單調遞增區(qū)間(不要求過程,只要寫出結果即可);
(Ⅱ)討論f(x)的定義域;
(Ⅲ)若對于任意的實數$t∈({\frac{1}{2},1})$,f(|x|)=t都有四個不同的實數解,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.已知函數$f(x)=\left\{{\begin{array}{l}{lg|x-2|}&{(x≠2)}\\ 1&{(x=2)}\end{array}}\right.$,若g(x)=[f(x)]2+bf(x)+c(其中b,c為常數)恰有5個不同的零點x1,x2,x3,x4,x5,則f(x1+x2+x3+x4+x5)=(  )
A.3lg2B.2lg2C.0D.1

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.在(1+x)+(1+x)2+(1+x)3+…+(1+x)2011的展開式中,含x3的項的系數為( 。
A.$C_{2011}^3$B.$C_{2011}^4$C.$C_{2012}^3$D.$C_{2012}^4$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.設函數y=f(x)的定義域為R,對于給定的正數K,定義函數${f_K}(x)=\left\{\begin{array}{l}f(x),f(x)≤K\\ K,f(x)>K\end{array}\right.$,取函數f(x)=-x2+2x,若對于任意的x∈(-∞,+∞),恒有fK(x)=f(x),則( 。
A.K的最大值為2B.K的最小值為2C.K的最大值為1D.K的最小值為1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.若不等式ax2+5x-2>0的解集是$\left\{{\left.x\right|\frac{2}{3}<x<1}\right\}$,
(1)求a的值;
(2)求不等式ax2-5x-1>0的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.設集合M={x∈N*|x<9},S1,S2,…,Sk都是M的含有兩個元素的子集,且滿足:對任意的Si={ai,bi}(i∈{1,2,3,…,k}),總存在Sj={aj,bj}(j≠i,j∈{1,2,3,…,k})使得$max\left\{{\frac{a_j}{b_j},\frac{b_j}{a_j}}\right\}=max\left\{{\frac{a_i}{b_i},\frac{b_i}{a_i}}\right\}$,(max{x,y}表示兩個數x,y中的較大者),則k的最大值是(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

1.已知向量$\overrightarrow a$=(sin35°,cos35°),$\overrightarrow b$=(cos5°,-sin5°),則$\overrightarrow a$•$\overrightarrow b$=$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案