6.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的漸近線與圓x2+(y-2)2=1相交,則雙曲線C的離心率e的取值范圍是(1,$\frac{2\sqrt{3}}{3}$).

分析 先根據(jù)雙曲線方程求得雙曲線的漸近線,進(jìn)而利用圓心到漸近線的距離小于半徑求得a和b的關(guān)系,進(jìn)而利用c2=a2+b2求得a和c的關(guān)系,則雙曲線的離心率可求.

解答 解:∵雙曲線漸近線為ax±by=0,與圓x2+(y-2)2=1相交,
∴圓心到漸近線的距離小于半徑,即$\frac{2b}{\sqrt{{a}^{2}+^{2}}}$<1,
∴3b2<a2
∴c2=a2+b2<$\frac{4}{3}$a2,
∴e=$\frac{c}{a}$<$\frac{2\sqrt{3}}{3}$
∵e>1
∴1<e<$\frac{2\sqrt{3}}{3}$.
故答案為:(1,$\frac{2\sqrt{3}}{3}$).

點(diǎn)評(píng) 本題主要考查了雙曲線的簡(jiǎn)單性質(zhì),直線與圓的位置關(guān)系,點(diǎn)到直線的距離公式等.考查了學(xué)生數(shù)形結(jié)合的思想的運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=|log2|x-3||,且關(guān)于x的方程[f(x)]2+af(x)+b=0有6個(gè)不同的實(shí)數(shù)解,若最小實(shí)數(shù)解為-5,則a+b的值為( 。
A.-3B.-2C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知直線l1的方程為mx+2y-1=0,直線l2的方程為mx+(m-4)y+5=0,
(1)若l1⊥l2,求實(shí)數(shù)m的值;
(2)若l1∥l2,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{x}^{2}}{1+x}$+$\frac{1}{x}$,x∈(0,+∞).
(1)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)設(shè)函數(shù)g(x)=f(x)-$\frac{1}{x}$-alnx(a>0),證明:函數(shù)g(x)有唯一一個(gè)極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知復(fù)數(shù)z=$\frac{{{i^{2016}}}}{3+2i}$,則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)=x3+3ax2+bx+a2在x=-1時(shí)有極值0,求常數(shù)a,b的值.并求函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在△ABC中,a=42,A=45°,B=60°,解三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.如圖,在邊長(zhǎng)為60cm的正方形的四個(gè)角除去邊長(zhǎng)相等的正方形,再把它的邊沿虛線折起,做成一個(gè)無(wú)蓋的方底箱子,箱底邊長(zhǎng)( 。⿻r(shí),箱子容積最大.
A.10cmB.20cmC.30cmD.40cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.把半徑為2的圓分成相等的四弧,再將四弧圍成星形放在半徑為2的圓內(nèi),現(xiàn)在往該圓內(nèi)任投一點(diǎn),此點(diǎn)落在星形內(nèi)的概率為$\frac{4}{π}-1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案