15.下面的哪些對應(yīng)是從A到B的一一映射( 。
A.A={1,2,3,4},B={3,5,7},對應(yīng)關(guān)系:f(x)=2x+1,x∈A
B.A=R,B=R,對應(yīng)關(guān)系;f(x)=x2-1,x∈A
C.A={1,4,9},B={-1,1,-2,2,-3,3},對應(yīng)關(guān)系:A中的元素開平方
D.A=R,B=R,對應(yīng)關(guān)系:f(x)=x3,x∈A

分析 判斷一個對應(yīng)關(guān)系是否為一一映射,要從基本概念入手,看是否滿足一一映射的條件,從而得出結(jié)論.

解答 解:A選項,x=4,B中沒有像與之對應(yīng),所以不是映射;
B選項,元素-2在B中沒有像與之對應(yīng),所以不是映射;
C選項,x=1,B中有2個元素對于,所以不是映射;
D選項,A中的每一個元素在B中都有唯一元素與之對應(yīng),A中的不同元素在B中的像也不同,且B中的元素在A中都有原像,所以是一一映射.
故選:D.

點評 本題主要考查映射、一一映射的定義,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列四個結(jié)論中正確的個數(shù)是(  )
(1)“x2+x-2>0”是“x>1”的充分不必要條件;
(2)命題:“?x∈R,sinx≤1”的否定是“?x0∈R,sinx0>1”;
(3)“若x=$\frac{π}{4}$,則tanx=1”的逆命題為真命題;
(4)若f(x)是R上的奇函數(shù),則f(log32)+f(log23)=0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l1:x+my+6=0與l2:(m-2)x+3my+2m=0.
(1)當(dāng)m為何值時,l1與l2平行;
(2)當(dāng)m為何值時,l1與l2垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x2-(a-2)x-alnx(a∈R).
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a=1時,證明:對任意的x>0,f(x)+ex>x2+x+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)曲線y=$\frac{x+1}{x-1}$在點(2,3)處的切線與直線ax+y+1=0平行,則a=( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2x2-1
(Ⅰ)用定義證明f(x)是偶函數(shù);
(Ⅱ)用定義證明f(x)在(∞,0]上是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.補全函數(shù)y=$\left\{\begin{array}{l}{\frac{π}{2}x-5,(x>0)}\\{0,(x=0)}\\{\frac{π}{2}x+3,(x<0)}\end{array}\right.$,的流程圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin2x+2cos2x-1,x∈R.
(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)在區(qū)間[$\begin{array}{l}{-\frac{π}{4}$,$\frac{π}{4}}\end{array}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某創(chuàng)業(yè)團隊擬生產(chǎn)A、B兩種產(chǎn)品,根據(jù)市場預(yù)測,A產(chǎn)品的利潤與投資額成正比(如圖1),B產(chǎn)品的利潤與投資額的算術(shù)平方根成正比(如圖2).(注:利潤與投資額的單位均為萬元)
(1)分別將A、B兩種產(chǎn)品的利潤f(x)、g(x)表示為投資額x的函數(shù);
(2)該團隊已籌到10萬元資金,并打算全部投入A、B兩種產(chǎn)品的生產(chǎn),問:當(dāng)B產(chǎn)品的投資額為多少萬元時,生產(chǎn)A、B兩種產(chǎn)品能獲得最大利潤,最大利潤為多少?

查看答案和解析>>

同步練習(xí)冊答案