3.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,x≥0}\\{-3x,x<0}\end{array}}\right.$.
(Ⅰ)畫(huà)出f(x)的圖象(無(wú)需列表),并寫(xiě)出函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)若x∈[0,a],求f(x)的最大值.

分析 (Ⅰ)根據(jù)函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,x≥0}\\{-3x,x<0}\end{array}}\right.$的解析式,可得函數(shù)的圖象;數(shù)形結(jié)合,可得函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)數(shù)形結(jié)合,對(duì)a進(jìn)行分類討論,可得x∈[0,a]時(shí)f(x)的最大值的表達(dá)式.

解答 解:(Ⅰ)函數(shù)$f(x)=\left\{{\begin{array}{l}{-{x^2}+2x,x≥0}\\{-3x,x<0}\end{array}}\right.$的圖象如下圖所示:

由圖可得:函數(shù)的單調(diào)遞減區(qū)間為(-∞,0]和[1,+∞);
(Ⅱ)若x∈[0,a],
當(dāng)a∈(0,1)時(shí),f(x)max=-a2+2a,
當(dāng)a∈[1,+∞)時(shí),f(x)max=1,
綜上可得:f(x)max=$\left\{\begin{array}{l}-{a}^{2}+2a,0<a<1\\ 1,a≥1\end{array}\right.$.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是分段函數(shù)的應(yīng)用,數(shù)形結(jié)合思想,函數(shù)的單調(diào)區(qū)間與最值,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=ax2-2x+2,a∈R
(1)已知h(10x)=f(x)+x+1,求h(x)的解析式;
(2)若f(x)>0在x∈[1,2]恒成立,求a的取值范圍;
(3)設(shè)函數(shù)F(x)=|f(x)|,若對(duì)任意x1,x2∈[1,2],且x1≠x2,滿足$\frac{{F({x_1})-F({x_2})}}{{{x_1}-{x_2}}}$>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.甲、乙兩種小麥試驗(yàn)品種連續(xù)5年平均單位單位面積產(chǎn)量如下(單位:t/hm2):根據(jù)統(tǒng)計(jì)學(xué)知識(shí)可判斷甲、乙兩種小麥試驗(yàn)品情況為(  )
品種第一年第二年第三年第四年第五年
9.89.910.11010.2
9.410.310.89.79.8
A.甲與乙穩(wěn)定性相同
B.甲穩(wěn)定性好于乙的穩(wěn)定性
C.乙穩(wěn)定性好于甲的穩(wěn)定性
D.甲與乙穩(wěn)定性隨著某些因素的變化而變化

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.計(jì)算:
(1)2log210+log20.04   
(2)(log43+log83)•(log35+log95)•(log52+log252)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列命題中正確的個(gè)數(shù)是(  )
①若一條直線平行于一個(gè)平面,則這條直線與平面內(nèi)的任意直線都不相交
②過(guò)平面外一點(diǎn)有且只有一條直線與該平面平行;
③若一條直線和一個(gè)平面平行,則該平面內(nèi)只有一條直線和該直線平行.
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)已知$cos(α+\frac{π}{6})-sinα=\frac{{3\sqrt{3}}}{5}$,求$sin(α+\frac{5π}{6})$的值;
(2)已知$sinα+sinβ=\frac{1}{2},cosα+cosβ=\frac{{\sqrt{2}}}{2}$,求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.重慶一中開(kāi)展支教活動(dòng),有五名教師被隨機(jī)的分到49中學(xué)、璧山中學(xué)、禮嘉中學(xué),且每個(gè)中學(xué)至少一名教師,
(1)求共有多少種分派方法;(用數(shù)字作答)
(2)求璧山中學(xué)分到兩名教師的概率;
(3)設(shè)隨機(jī)變量X為這五名教師分到璧山中學(xué)的人數(shù),求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=$\frac{x-2}{x-1}$與g(x)═mx+1-m的圖象相交于點(diǎn)A,B兩點(diǎn),若動(dòng)點(diǎn)P滿足|$\overrightarrow{PA}$+$\overrightarrow{PB}$|=2,則P的軌跡方程是(x-1)2+(y-1)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,在五棱錐F-ABCDE中,平面AEF⊥平面ABCDE,AF=EF=1,AB=DE=2,BC=CD=3,且∠AFE=∠ABC=∠BCD=∠CDE=90°.
(1)已知點(diǎn)G在線段FD上,確定G的位置,使得AG∥平面BCF;
(2)點(diǎn)M,N分別在線段DE,BC上,若沿直線MN將四邊形MNCD向上翻折,D與F恰好重合,求直線BM與平面BEF所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案