20.有3個大學(xué)畢業(yè)生,現(xiàn)在有兩個工作崗位可選擇,共有( 。┓N選法.
A.9B.8C.6D.5

分析 直接根據(jù)分步計數(shù)原理可得.

解答 解:每個大學(xué)生都有2種選擇,故有23=8種,
故選:B.

點評 本題考查了分步計數(shù)原理,關(guān)鍵是分步,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若規(guī)定$|\begin{array}{l}{a}&\\{c}&agqzbis\end{array}|$=ad-bc(a、b∈R,a≠b),則$|\begin{array}{l}{a}&{-b}\\&{a}\end{array}|$與$|\begin{array}{l}{a}&{-a}\\&\end{array}|$的大小關(guān)系>.(填“>”、“=”或“<”)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合A={x|y=lnx},B={x|x2-2x-3<0},則A∩B=( 。
A.(0,3)B.(-∞,-1)∪(0,+∞)C.(-∞,-1)∪(3,+∞)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an}滿足a1=1,且對于任意n∈N*都有an+1=an+n+1,則$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{1001}}$=$\frac{1001}{501}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.當x∈[2,8]時,關(guān)于x的不等式log2x+logx16-a≥0恒成立,則實數(shù)a的取值范圍是a≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{|x|-a}$(a>0,b>0),因其圖象類似于漢字“囧”字,被稱為“囧函數(shù)”,我們把函數(shù)f(x)的圖象與y軸的交點關(guān)于原點的對稱點稱為函數(shù)f(x)的“囧點”,以函數(shù)f(x)的“囧點”為圓心,與函數(shù)f(x)的圖象有公共點的圓,皆稱函數(shù)f(x)的“囧圓”,則當a=b=1時,有下列命題:
①對任意x∈(0,+∞),都有f(x)>$\frac{1}{x}$成立;
②存在x0∈($\frac{π}{6}$,$\frac{π}{3}$),使f(x0)<tanx0成立;
③函數(shù)f(x)的“囧點”與函數(shù)y=lnx圖象上的點的最短距離是$\sqrt{2}$;
④函數(shù)f(x)的所有“囧圓”中,其周長的最小值為2$\sqrt{3}$π.
其中的正確命題有②③④(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.(x-$\frac{2}{x}$)10的展開式中,常數(shù)項等于-8064.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F作斜率為-1的直線,且l與此雙曲線的兩條漸近線的交點分別為B,C,若$\overrightarrow{FB}$=$\frac{1}{3}$$\overrightarrow{BC}$,則此雙曲線的離心率為( 。
A.$\frac{\sqrt{34}}{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{34}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x=$\left\{\begin{array}{l}{f(x+2),x<2}\\{(\frac{1}{3})^{x},x≥2}\end{array}\right.$,f(-1+log35)的值為( 。
A.$\frac{1}{15}$B.$\frac{5}{3}$C.15D.$\frac{2}{3}$

查看答案和解析>>

同步練習冊答案