已知全集U=R,A={x|2≤x≤5},集合B是函數(shù)y=
x-3
+lg(9-x)的定義域.
(1)求集合B;
(2)求A∪B;
(3)求A∩(CuB).
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,集合
分析:(1)求函數(shù)y=
x-3
+lg(9-x)的定義域B=[3,9);
(2)化簡集合A,再求A∪B;
(3)先求CuB,再求A∩(CuB).
解答: 解:(1)由題意得,
x-3≥0
9-x>0

解得,3≤x<9;
故B=[3,9);
(2)A={x|2≤x≤5}=[2,5],
A∪B=[2,9);
(3)CuB=(-∞,3)∪[9,+∞);
故A∩(CuB)=[2,3).
點(diǎn)評:本題考查了函數(shù)的定義域的求法及集合的運(yùn)算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

光線沿直線l1:x-2y+5=0射入遇直線l:3x-2y+7=0后反射求反射光線所在的直線方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩圓x2+y2-2x+10y+1=0,x2+y2-2x+2y-m=0相交,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x+lgx-3的零點(diǎn)所在的區(qū)間為(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4和點(diǎn)M(1,a),
(1)若過點(diǎn)M有且只有一條直線與圓O相切,求實(shí)數(shù)a的值,并求出切線方程;
(2)若a=2,圓O上有一動(dòng)點(diǎn)N(x0,y0),設(shè)線段MN上一點(diǎn)P滿足MP=2PN,求點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)A、B分別為橢圓的左頂點(diǎn)和上頂點(diǎn),B1、F分別為橢圓下頂點(diǎn)和右焦點(diǎn),若直線B1F的斜率為
3
,直線AB與B1F交于點(diǎn)P(4,3
3
),則橢圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)研究發(fā)現(xiàn),學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散.設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:f(t)=
-t2+26t+80 ,  0<t≤10
240 ,          10≤t≤20
kt+400 ,         20≤t≤40

(1)求出k的值,并指出講課開始后多少分鐘,學(xué)生的注意力最集中?能堅(jiān)持多久?
(2)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到185,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一個(gè)k進(jìn)制數(shù)132與十進(jìn)制數(shù)30相等,那么k等于( 。
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“1<x<2”是“|x|<a”的充分不必要條件,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案