【題目】設(shè)函數(shù)由方程到確定,對(duì)于函數(shù)給出下列命題:

①對(duì)任意,都有恒成立:

,使得同時(shí)成立;

③對(duì)于任意恒成立;

④對(duì)任意,,

都有恒成立.其中正確的命題共有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

【答案】B

【解析】

分四類情況進(jìn)行討論,畫出相對(duì)應(yīng)的函數(shù)圖象,由函數(shù)圖象判斷所給命題的真假性.

由方程知,

當(dāng)x0y0時(shí),方程為y21;

當(dāng)x0y0時(shí),方程為y21,不成立;

當(dāng)x0y0時(shí),方程為y21;

當(dāng)x0y0時(shí),方程為y21;

作出函數(shù)fx)的圖象如圖所示,

對(duì)于,fx)是定義域R上的單調(diào)減函數(shù),則

對(duì)任意x1,x2R,x1x2,都有恒成立,正確;

對(duì)于,假設(shè)點(diǎn)(a,b)在第一象限,則點(diǎn)(b,a)也在第一象限,

所以,該方程組沒(méi)有實(shí)數(shù)解,所以該情況不可能;

假設(shè)點(diǎn)(a,b)在第四象限,則點(diǎn)(b,a)在第二象限,

所以,該方程組沒(méi)有實(shí)數(shù)解,所以該種情況不可能;

同理點(diǎn)(a,b)在第二象限,則點(diǎn)(b,a)在第四象限,也不可能.

故該命題是假命題.

對(duì)于,由圖形知,對(duì)于任意xR,有fxx,

2fx+x0恒成立,正確;

對(duì)于,不妨令t,則tfx1+1tfx2)﹣f[tx1+1tx2]0

f),不是恒成立,所以錯(cuò)誤.

綜上知,正確的命題序號(hào)是①③

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線是雙曲線的一條漸近線,點(diǎn)都在雙曲線上,直線軸相交于點(diǎn),設(shè)坐標(biāo)原點(diǎn)為.

1)求雙曲線的方程,并求出點(diǎn)的坐標(biāo)(用表示);

2)設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線軸相交于點(diǎn).問(wèn):在軸上是否存在定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

3)若過(guò)點(diǎn)的直線與雙曲線交于兩點(diǎn),且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合函數(shù),函數(shù)的值域?yàn)?/span>,

(1)若不等式的解集為,求的值;

(2)在(1)的條件下,若恒成立,求的取值范圍;

(3)若關(guān)于的不等式的解集,求實(shí)數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)參加項(xiàng)目生產(chǎn)的工人為人,平均每人每年創(chuàng)造利潤(rùn)萬(wàn)元.根據(jù)現(xiàn)實(shí)的需要,從項(xiàng)目中調(diào)出人參與項(xiàng)目的售后服務(wù)工作,每人每年可以創(chuàng)造利潤(rùn)萬(wàn)元(),項(xiàng)目余下的工人每人每年創(chuàng)造利圖需要提高

1)若要保證項(xiàng)目余下的工人創(chuàng)造的年總利潤(rùn)不低于原來(lái)名工人創(chuàng)造的年總利潤(rùn),則最多調(diào)出多少人參加項(xiàng)目從事售后服務(wù)工作?

2)在(1)的條件下,當(dāng)從項(xiàng)目調(diào)出的人數(shù)不能超過(guò)總?cè)藬?shù)的時(shí),才能使得項(xiàng)目中留崗工人創(chuàng)造的年總利潤(rùn)始終不低于調(diào)出的工人所創(chuàng)造的年總利潤(rùn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果.某采購(gòu)商從采購(gòu)的一批水果中隨機(jī)抽取個(gè),利用水果的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:

等級(jí)

標(biāo)準(zhǔn)果

優(yōu)質(zhì)果

精品果

禮品果

個(gè)數(shù)

10

30

40

20

(1)若將頻率是為概率,從這個(gè)水果中有放回地隨機(jī)抽取個(gè),求恰好有個(gè)水果是禮品果的概率.(結(jié)果用分?jǐn)?shù)表示)

(2)用樣本估計(jì)總體,果園老板提出兩種購(gòu)銷方案給采購(gòu)商參考.

方案:不分類賣出,單價(jià)為.

方案:分類賣出,分類后的水果售價(jià)如下:

等級(jí)

標(biāo)準(zhǔn)果

優(yōu)質(zhì)果

精品果

禮品果

售價(jià)(元/kg)

16

18

22

24

從采購(gòu)單的角度考慮,應(yīng)該采用哪種方案?

(3)用分層抽樣的方法從這個(gè)水果中抽取個(gè),再?gòu)某槿〉?/span>個(gè)水果中隨機(jī)抽取個(gè),表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,已知曲線的方程為,曲線的方程為.以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系

(1)求曲線,的直角坐標(biāo)方程;

(2)若曲線軸相交于點(diǎn),與曲線相交于,兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)的定義域?yàn)?/span>,且存在實(shí)常數(shù),使得對(duì)定義域內(nèi)的任意,都有恒成立,那么稱此函數(shù)具有“性質(zhì)”.

1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”,求出所有的值,若不具有“性質(zhì)”,請(qǐng)說(shuō)明理由;

2)已知具有“性質(zhì)”,且當(dāng)時(shí),,求的最大值;

3)已知函數(shù)既具有“性質(zhì)”,又具有“性質(zhì)”且當(dāng)時(shí),,若函數(shù)圖象與直線的公共點(diǎn)有個(gè),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,底面△是等腰直角三角形,為側(cè)棱的中點(diǎn).

1)求證:平面;

2)求異面直線所成角的大。ńY(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市2013年發(fā)放汽車牌照12萬(wàn)張,其中燃油型汽車牌照10萬(wàn)張,電動(dòng)型汽車2萬(wàn)張,為了節(jié)能減排和控制總量,從2013年開(kāi)始,每年電動(dòng)型汽車牌照按50%增長(zhǎng),而燃油型汽車牌照每一年比上一年減少05萬(wàn)張,同時(shí)規(guī)定一旦某年發(fā)放的牌照超過(guò)15萬(wàn)張,以后每一年發(fā)放的電動(dòng)車的牌照的數(shù)量維持在這一年的水平不變.

1)記2013年為第一年,每年發(fā)放的燃油型汽車牌照數(shù)量構(gòu)成數(shù)列,每年發(fā)放電動(dòng)型汽車牌照數(shù)為構(gòu)成數(shù)列,完成下列表格,并寫出這兩個(gè)數(shù)列的通項(xiàng)公式;

2)從2013年算起,累計(jì)各年發(fā)放的牌照數(shù),哪一年開(kāi)始超過(guò)200萬(wàn)張?











查看答案和解析>>

同步練習(xí)冊(cè)答案