分析 運(yùn)用向量的平方即為模的平方,將等式兩邊平方,再由向量垂直的條件,即可得到夾角.
解答 解:向量$\overrightarrow a,\overrightarrow b$滿足|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|,則($\overrightarrow{a}$+$\overrightarrow$)2=($\overrightarrow{a}$-$\overrightarrow$)2,
即$\overrightarrow{a}$2+$\overrightarrow$2+2$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$2+$\overrightarrow$2-2$\overrightarrow{a}$•$\overrightarrow$,
即有$\overrightarrow{a}$•$\overrightarrow$=0,
則$\overrightarrow a$與$\overrightarrow b$所成的夾角大小:$\frac{π}{2}$.
故答案為:$\frac{π}{2}$.
點(diǎn)評(píng) 本題考查平面向量的數(shù)量積的性質(zhì):向量垂直的條件和向量的平方即為模的平方,考查運(yùn)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b+1 | B. | $\frac{a}$>1 | C. | a2>b2 | D. | a3>b3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(sinA)<f(cosB) | B. | f(sinA)>f(cosB) | ||
C. | f(sinA)=f(cosB) | D. | f(sinA)與與f(cosB)的大小關(guān)系不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{\sqrt{15}}{4}$ | D. | -$\frac{\sqrt{15}}{4}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com