8.已知函數(shù)f(x)=4sinxcos(x+$\frac{π}{6}$)+1.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)在△ABC,角A,B,C的對(duì)邊分別為a,b,c,若f(A)=2,a=3,S△ABC=$\sqrt{3}$,求b2+c2的值.

分析 (1)根據(jù)兩角和的余弦公式、二倍角公式及輔助角公式將f(x)化簡(jiǎn)為f(x)=2sin(2x+$\frac{π}{6}$),由正弦函數(shù)圖象及性質(zhì)即可求得函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)f(A)=2,根據(jù)A的取值范圍求得A的值,由三角形面積公式即可求得bc的值,利用余弦定理即可求得b2+c2的值.

解答 解:(1)f(x)=4sinx(cosxcos$\frac{π}{6}$-sinxsin$\frac{π}{6}$)+1,
=2$\sqrt{3}$sinxcosx-2sin2x+1,
=$\sqrt{3}$sin2x+cos2x,
=2sin(2x+$\frac{π}{6}$),…(4分)
令2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$,k∈Z,
解得:kπ+$\frac{π}{6}$≤x≤kπ+$\frac{2π}{3}$,k∈Z,
∴函數(shù)f(x)的單調(diào)遞減區(qū)間為[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z);…(6分)
(2)∵f(A)=2sin(2A+$\frac{π}{6}$)=2,
∴sin(2A+$\frac{π}{6}$)=1.…(7分)
又∵0<A<π,
∴$\frac{π}{6}$<2A+$\frac{π}{6}$<$\frac{13π}{6}$,
∴2A+$\frac{π}{6}$=$\frac{π}{2}$,A=$\frac{π}{6}$.…(8分)
∵S△ABC=$\frac{1}{2}$bcsinA=$\sqrt{3}$,
∴bc=4$\sqrt{3}$.…(9分)
由余弦定理可知:a2=b2+c2-2bccosA,
∴9=b2+c2-12,
∴b2+c2=21.…(12分)

點(diǎn)評(píng) 本題考查三角函數(shù)的恒等變換、三角形面積公式、余弦定理以及三角函數(shù)圖象與性質(zhì)的綜合應(yīng)用,熟練掌握相關(guān)定理及公式是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C1:ρ2-4ρcosθ+3=0,θ∈[0,2π],曲線C2:ρ=$\frac{3}{{4sin({\frac{π}{6}-θ})}}$,θ∈[0,2π].
(Ⅰ)求曲線C1的一個(gè)參數(shù)方程;
(Ⅱ)若曲線C1和曲線C2相交于A、B兩點(diǎn),求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某商場(chǎng)對(duì)品牌電視的日銷售量(單位:臺(tái))進(jìn)行最近100天的統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如表:
日銷售量1234
頻數(shù)A40B5
頻率$\frac{2}{5}$C$\frac{3}{20}$D
(1)求出表中A、B、C、D的值;
(2)①試對(duì)以上表中的銷售x與頻數(shù)Y的關(guān)系進(jìn)行相關(guān)性檢驗(yàn),是否有95%把握認(rèn)為x與Y之間具有線性相關(guān)關(guān)系,請(qǐng)說明理由;
②若以上表頻率為概率,且每天的銷售量相互獨(dú)立,已知每臺(tái)電視機(jī)的銷售利潤(rùn)為200元,X表示該品牌電視機(jī)每天銷售利潤(rùn)的和(單位:元),求X數(shù)學(xué)期望.
參考公式:
相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i}-n\overline{x}•\overline{y})}{\sqrt{(\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2})(\sum_{i=1}^{n}{y}^{2}-n{\overline{y}}^{2})}}$
參考數(shù)據(jù):$\sqrt{190}$≈13.8,$\sum_{i=1}^{4}{x}_{i}{y}_{i}-4\overline{x}•\overline{y}$=-65,$\sum_{i=1}^{4}{x}_{i}^{2}-4{\overline{x}}^{2}$=5,$\sum_{i=1}^{4}{y}_{i}^{2}-4{\overline{y}}^{2}$=950,其中xi為日銷售量,yi是xi所對(duì)應(yīng)的頻數(shù).
相關(guān)性檢驗(yàn)的臨界值表
n-2 小概率
 0.050.01 
 1 0.9971.000 
 2 0.950 0.990
 3 0.8780.959

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知命題p:?x∈R,x2+2x+3=0,則¬p是?x∈R,x2+2x+3≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知隨機(jī)變量X服從正態(tài)分布N(μ,σ2),且P(μ-2σ<X<μ+2σ)=0.954 4,P(μ-σ<X<μ+σ)=0.682 6.若μ=4,σ=1,則P(5<X<6)=( 。
A.0.135 9B.0.135 8C.0.271 8D.0.271 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.集合A={2,0,1,6},B={x|x+a>0,x∈R},A⊆B,則實(shí)數(shù)a的取值范圍是(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知f(x),x∈R是有界函數(shù),即存在M>0使得|f(x)|≤M恒成立.
(1)F(x)=f(x+1)-f(x)是有界函數(shù),則f(x),x∈R是否是有界函數(shù)?說明理由;
(2)判斷f1(x)=$\frac{4x}{{{x^2}-2x+3}}$,f2(x)=9x-2•3x是否是有界函數(shù)?
(3)有界函數(shù)f(x),x∈R滿足f(x+$\frac{1}{4}}$)+f(x+$\frac{1}{3}}$)=f(x)+f(x+$\frac{7}{12}}$),f(x),x∈R是否是周期函數(shù),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知{an},{bn}為兩非零有理數(shù)列(即對(duì)任意的i∈N*,ai,bi均為有理數(shù)),{dn}為一無理數(shù)列(即對(duì)任意的i∈N*,di為無理數(shù)).
(1)已知bn=-2an,并且(an+bndn-andn2)(1+dn2)=0對(duì)任意的n∈N*恒成立,試求{dn}的通項(xiàng)公式.
(2)若{dn2}為有理數(shù)列,試證明:對(duì)任意的n∈N*,(an+bndn-andn2)(1+dn2)=1+dn恒成立的充要條件為$\left\{\begin{array}{l}{a_n}=\frac{1}{1-d_n^4}\\{b_n}=\frac{1}{1+d_n^2}\end{array}$.
(3)已知sin2θ=$\frac{24}{25}$(0<θ<$\frac{π}{2}$),dn=$\root{3}{{tan(n•\frac{π}{2})+{{(-1)}^n}θ}}$,對(duì)任意的n∈N*,(an+bndn-andn2)(1+dn2)=1恒成立,試計(jì)算bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項(xiàng)和Sn=k•3n-m,且a1=3,a3=27.
(I)求證:數(shù)列{an}是等比數(shù)列;
(II)若anbn=log3an+1,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案