11.設(shè)圓C的半徑為1,圓心C在直線3x-y=0上
(Ⅰ)直線x-y+3=0被圓C截得弦長(zhǎng)$\sqrt{2}$,求圓C的方程;
(Ⅱ)設(shè)A(0,3),若圓C上總存在兩個(gè)不同的點(diǎn)到A的距離為2,求圓心C的橫坐標(biāo)的取值范圍.

分析 (Ⅰ)若圓C被直線x-y+3=0截得的弦長(zhǎng)為$\sqrt{2}$,利用勾股定理,即可求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)由題意,問題等價(jià)于圓A和圓C相交時(shí),求圓心C橫坐標(biāo)a的取值范圍.

解答 解:(Ⅰ)因?yàn)閳A心C在直線3x-y=0上,所以設(shè)圓心C的坐標(biāo)為(a,3a),
因?yàn)閳AC的半徑為1,圓C被直線x-y+3=0截得的弦長(zhǎng)為$\sqrt{2}$,
所以圓心C到直線x-y+3=0的距離d=$\sqrt{1-\frac{1}{2}}$=$\frac{\sqrt{2}}{2}$,
又d=$\frac{|a-3a+3|}{\sqrt{2}}$=$\frac{|2a-3|}{\sqrt{2}}$,所以$\frac{|2a-3|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}$,
解得a=1或a=2,所以圓心C的坐標(biāo)為(1,3)或(2,6).
所以圓C的標(biāo)準(zhǔn)方程為:(x-1)2+(y-3)2=1或(x-2)2+(y-6)2=1.(6分)
(Ⅱ)設(shè)圓A:x2+(y-3)2=4,由(Ⅰ)設(shè)圓心C的坐標(biāo)為(a,3a).
由題意,問題等價(jià)于圓A和圓C相交時(shí),求圓心C橫坐標(biāo)a的取值范圍,即1<$\sqrt{{a}^{2}+(3a-3)^{2}}$<3,
由$\sqrt{{a}^{2}+(3a-3)^{2}}$>1整理得5a2-9a+4>0,解得a<$\frac{4}{5}$或a>1;
由$\sqrt{{a}^{2}+(3a-3)^{2}}$<3整理得5a2-9a<0,解得0<a<$\frac{9}{5}$.
所以0<a<$\frac{4}{5}$或1<a<$\frac{9}{5}$.(6分)

點(diǎn)評(píng) 本題考查圓的方程的應(yīng)用,直線與圓的位置關(guān)系,考查分析問題解決問題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=(x-2)ex+a(x-1)2有兩個(gè)零點(diǎn).
(1)求a的取值范圍;
(2)已知 g(x) 圖象與 y=f(x) 圖象關(guān)于x=1對(duì)稱,證明:當(dāng)  x<1 時(shí),f(x)<g(x).
(3)設(shè)x1,x2是的兩個(gè)零點(diǎn),證明:x1+x2<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)P,Q分別為圓x2+(y-6)2=2和橢圓$\frac{{x}^{2}}{10}$+y2=1上的點(diǎn),則P,Q兩點(diǎn)間的最大距離是6$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.命題:p:?x0∈R,x${\;}_{0}^{2}$+2x0+5<0,它的否定¬p?x0∈R,x${\;}_{0}^{2}$+2x0+5≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)f(x)=$\frac{1}{3}$x3+ax2+b2x+1,若a是從1,2,3三個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),則該函數(shù)有兩個(gè)極值點(diǎn)的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.為了了解學(xué)生的體能情況,抽取了某學(xué)校同年級(jí)部分學(xué)生作為樣本進(jìn)行跳繩測(cè)試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖如圖所示,已知圖中從左到右前三個(gè)小組的頻率分別是0.1,0.3,0.4,第四小組的頻數(shù)為10.
(1)求樣本容量n
(2)根據(jù)樣本頻率分布直方圖,估計(jì)學(xué)生跳繩次數(shù)的中位數(shù)(保留整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.(x-2y)6展開式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù)為-160(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.我國(guó)古代數(shù)學(xué)家利用“牟合方蓋”(如圖甲)找到了球體體積的計(jì)算方法.它是由兩個(gè)圓柱分別從縱橫兩個(gè)方向嵌入一個(gè)正方體時(shí)兩圓柱公共部分形成的幾何體.圖乙所示的幾何體是可以形成“牟合方蓋”的一種模型,其直觀圖如圖丙,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其正視圖和側(cè)視圖完全相同時(shí),它的正視圖和俯視圖分別可能是(  )
A.a,bB.a,dC.c,bD.c,d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)y=3sin($\frac{π}{4}$-2x),則其單調(diào)遞增區(qū)間為[kπ+$\frac{3π}{8}$,kπ+$\frac{7π}{8}$],k∈Z.

查看答案和解析>>

同步練習(xí)冊(cè)答案